Lexicographic adventures: rhythm and surprises in open source word lists.
David Dailey and Nathaniel Zeiger
Slippery Rock University

Table of Contents
Abstract
Introduction
Section 0 – An brief illustration of the sorts of investigations to follow. Words whose letters are alphabetized.
Section I – A selection of resources from which other resources have been made
A. Word lists
B. Thesauruses
Section II – Analysis of characters in lexical resources
Section III – Analysis of sequences of characters
A. Common digrams, trigrams etc.
B. Interchangeable morphemes and polygrams
C. Rhythms of the alphabet
References

Abstract:
Over the past 20 years, author Dailey and various SRU students including the second author have built and expanded a variety of lexicographic resources used primarily for the teaching of UNIX shell scripting but also for investigating a variety of linguistic analyses of the English lexicon. This paper briefly summarizes the nature of some of these investigations.
Introduction:
Lexicography has a long and distinguished history, with “monolingual Sumerian wordlists in cuneiform writing on clay tablets, ” dating from 3200 BC. [1]. That history has been developed cross-culturally and continually since that time.
At least since the work of Carter Revard in 1967 [2] , the Brown corpus [3] and the beginning of Project Gutenberg in 1971 [4], scholars have expressed interest in obtaining and leveraging computer access to lexicographic resources, particularly those that have entered the public domain. As Michael Hart (the founder of the Gutenberg Project) explained [4]:
The Selection of Project Gutenberg Etexts:
There are three portions of the Project Gutenberg Library, basically be described as
Light Literature; such as Alice in Wonderland, [...],
Heavy Literature; such as the Bible, [...], Shakespeare, etc.
References; such as Roget's Thesaurus, almanacs, and a set of encyclopedia, dictionaries, etc.
In 1980-82, I worked with Revard and others at the University of Tulsa to compile collections of lexicographic resources, for use in journalistic, anthropological, sociological, linguistic and psychological research. Changes in my academic discipline led me, after that, in other scholarly directions, but since 1999, I’ve often taught a course in Unix shell scripting. I have found that using English word lists as “data” is something that students, who might lack mathematical or actuarial experience, might find to offer a more intuitive dataset than, for example, amortization tables. Accordingly, I’ve tried to keep a set of resources such as English word lists, thesauruses and dictionaries available for students to use to practice their sed, grep and awk skills.

Section 0 – A brief illustration of the sorts of investigations to follow. Words whose letters are alphabetized.
In order that the reader might have some idea of the sorts of invesigations that follow, one relatively simple, but at the same time, we think, unusual inquiry is presented.
Q: What do the following words have in common?

dehort
chintz
biopsy
begirt
almost
mopsy
horst
glory
gipsy
ghost
forty
first
filmy
empty
dirty
deity
deist
chino
chimp
blowy
bijou
below
begot
begin
befit
amort
ahint
aglow
aegis
adopt
adept
adeps
abort
abhor

A: The letters of each word are in alphabetical order: For example almost: a<l<m<o<s<t.
In fact, these represent all five and six letter words having this property found in a particular dictionary [4]. The little awk script we used to find them is as follows:
awk '{c=0; for (i=1; i<=NF; ++i) { if ($i < $(i+1)) c++ }; if (c>NF-2) print $0,NF }' FS="" FR2009|sort -nk2
(In which FR2009 is the dictionary used [5], see also the description of resource #9 in Section IA, above.) It should be noted for sake of transparency that one “word” found by this script was not included: “‘cept” since it begs the question of whether or not this is a real word, and if so, whether or not the apostrophe is, indeed, alphabetically prior to the lower case alphabetic characters that follow it.
Counting the number of such words, via the commands
awk '{c=0; for (i=1; i<=NF; ++i) { if ($i < $(i+1)) c++ }; if (c>NF-2) print $0,NF }' FS="" FR2009|wc –l
406
and
awk '{c=0; for (i=1; i<=NF; ++i) { if ($i < $(i+1)) c++ }; if (c>NF-2) print $0,NF }' FS="" FR2009|sort -nk2|awk '{print $2}'|uniq -c
 32 1
 130 2
 126 3
 83 4
 30 5
 5 6
we find 406 words (including 32 one letter words, 130 two letter words and so forth).
I should note however, if we use a much larger dictionary, such all words that appear in at least two of the sixteen resources discussed above, then a few extras can be found, including these gems: horsy, adhort, adipsy, agnosy, befist, begins, behint, beknot, bijoux, cestuy, chimps, chinos, chinoy, deflow, deflux, dehors, deimos, deinos, delors, dhikrs, diluvy, dimpsy, ghosty, deglory, egilops, and the eight letter aegilops, “a genus of Eurasian and North American plants in the grass family” [7].
A natural question, it would seem, is whether or not there are more or fewer words whose letters are in inverse alphabetical order. The answer is consistent across both of these dictionaries: No.
Table 1 shows the number of positively and negatively alphabetical words (as ‘almost’ or ‘sponge’, respectively) for the smaller FRELI dictionary [4] as well as the larger word list TwoOrMore [8].
	Number of words
	FRELI [4] 73735 words
	TwoOrMore [7] 406712 words

	Alphabetical (as a<l<m<o<s<t)
	406
	2195

	InverseAlpha (as s>p>o>n>g>e)
	243
	1594

The words in inverse alphabetical order (i.e., ‘monotonically decreasing’) were found via the following awk script (using, for instance, the Freli words, in FR2009):
awk '{c=0; for (i=1; i<=NF; ++i) { if ($i > $(i+1)) c++ }; if (c>NF-1) print $0,NF }' FS="" FR2009|sort -nk2
Interestingly, as discussed in Section IIC, this predominance of positively alphabetic words over the negatively alphabetic ones persists for all letter lengths greater than one.

This result is, perhaps, counterintuitive at several levels of expectation. Why aren’t there more such words? Why aren’t there longer examples? Why are there more that increase alphabetically than those that decrease? Such questions will be examined in more detail in this paper
Section I – A selection of resources from which other resources have been made
Part A. Word Lists
In 1980, at the University of Tulsa, I researched the speed with which people could determine when two sequence of letters (words or not) might have the same letters within them. How quickly, the studies asked, might people be able to respond in a reaction time experiment that the words “READ” and “DARE” for example, contain the same four letters? The results were intriguing, with certain categories of permutations and word-nonword pairings being far quicker for most subjects than others. Later analyses suggested strong cross-cultural differences in many of the results. Fundamental to such a study was the collection of anagrams, and for that, access to a “good” list of English words was important. In those days, a list of words for use in word games contained only a few thousand four letter words, and those could be keyed by hand, absent the availability of machine readable resources.
The first large online lexical resources that I became aware of included an earlier version (36,000 words instead of the 2009 version with its 73,000 words) of the FRELI project [4], the 1911 Roget’s thesaurus [8], and the 1913 Webster’s Unabridged Dictionary [9]. The 1913 Webster’s, from the Gutenberg Project [2], was packed with etymologies, complex and inconsistent markup, foreign words, errata, and was too difficult to parse for use in class assignments. The thesaurus, also from Gutenberg, was a bit too limited in raw vocabulary, and was somewhat quirky, owing, perhaps, to Roget’s rather idiosyncratic notions of semantic theory. The vocabulary of the FRELI list, on the other hand, was “believable”. That is, most of the 36,000 words in it, “looked like words”, even when an entry itself might not have been a part of one’s own vocabulary. As will be seen, not all such resources share this property of “face validity” among native speakers of the language. One might ask why we do not use more modern and authoritative resources? The answer: copyright law! Works published prior to 1923 in the United States have entered the public domain, more modern works almost always remain under copyright [10].
Accordingly, one is, for sake of unsponsored academic research and teaching, likely to seek open source, and or, public domain lexical resources.
A1. Various open source word lists
Altogether, we’ve been able to locate 16 different lists of English words, each with an open license that allows re-use, typically with attribution of source. In several cases, the work has entered the public domain due to expiration of copyright. These dictionaries vary considerably in age (ranging from the 19th through 21st centures) and degree of curation (some have been carefully curated by lexicographers or dictionary authors, while others have been sampled from large collections of “free range” English text). They also differ in orthographic convention (the handling of hyphenations, apostrophes, capitalization and non-ASCII characters, like é, æ and ñ), and “lexical tolerance” (what we call the degree of rigidity or toleration for such things as slang, misspellings, trademarks, place names, vulgarity, etc.).
Dictionaries are not all the same. In truth, since the days of Samuel Johnson’s first dictionary of the English language [10], the dictionary author’s personality [11] has influenced the final product, and, as is obvious from a cursory look at any “old” dictionary [10, 13], the English language changes over time. Many dictionaries come from a particular philosophical perspective and have more or less tolerance for the speech of the masses. For example, Webster was more prudish than Samuel Johnson, though he still came under some criticism for including too many vulgar words in his dictionary. In response he wrote
...one thing must be acknowledged by any man who will inspect the various dictionaries in theEnglish language, that if any portion of such words are inadmissable, Johnson has transgressed the rules of lexicography beyond any other compiler, for his work contains more of the lowest of all vulgar words than any other now extant ... Any person who will have the patience and candor to compare my dictionary with others will find that there is not a vocabulary of the English language extant more free from local, vulgar, and obscene words as mine.
By the time of the publication of the 1973 edition of the Webster’s New Collegiate Dictionary [13] all of the seven words that George Carlin in his famous 1972 monologue [12] on the subject said could not be used on television, were indeed “in the dictionary.”
While certain lexical resources (e.g., the 1919 Webster’s Collegiate Dictionary) [13] are now available online, the text for such has been converted to digital text through OCR, rendering many of those resources very difficult to use. For example, here are two entries (for consonantly and consort, respectively) from the version available from The Internet Archive.
OOn'SO-nant-ly, adv. In consonance ; in accord.

eon-sort' (kon-s6rt'), v. i. To unite ; associate ; also, to ac-
cord ; agree. — v. t. To escort or attend ; accompany. 06s.
Cleaning up this sort of materials for further use would require a major effort. Fortunately, the Gutenberg Project has often crowd-sourced the human effort to provide reliable machine readable versions of such lexical resources. Many of the resources that we’ve used come from there.
Another very noteworthy resource is the Wiktionary (located at https://www.wiktionary.org/). It claims over 5 million entries for English, and is an open source, collaborative project. Unfortunately, as of this writing, though the words in the database are searchable, we have been unable to find a way to download the lexical data to be able to query it repeatedly or to compare and contrast its data with the other resources we have made use of.

Here are the particular resources we’ve been able to use. By “use” we mean to find open access versions of, which are of sufficiently consistent encoding that they may be “consolidated” and compared to see the degree to which these resources overlap and differ. In some of the cases below, e.g., #10, AllenW, and #3 WebsUni, the raw dictionary itself was downloaded as a text file and then converted first to a word frequency tabulation and then to a listing of unique words used in the resource. So when I reference 138,000 words in the Webster resource, this doesn’t mean that all of those words had definitions within the dictionary, since some of those terms may have been used in the definitions of other words.
Here are the particular resources we’ve been able to use, with brief descriptions.
1. 74550com.mon from the Moby Project [15, 16].
74,550 common dictionary words. A list of words in common with two or more published dictionaries.

2. 354984si.ngl from Moby Project [15, 16].
354,984 single words. Over 354,000 single words, excluding proper names, acronyms, or compound words and phrases. This list does not exclude archaic words or significant variant spellings.

3. WebsUni -- From Webster's Revised Unabridged Dictionary, 1913.
138,900 words. In the public domain. (See https://en.wikipedia.org/wiki/Webster's_Dictionary#1913_edition)
The version we have used (see http://granite.sru.edu/~ddailey/cgi/readwebster?wild)
comes from the OPTED project: http://www.mso.anu.edu.au/~ralph/OPTED/index.html

4. Engwords -- https://invokeit.wordpress.com/frequency-word-lists/
456,631 words English Word Frequency list. Downloaded Fall 2016 from Hermit Dave. Licensed under Creative Commons – Attribution / ShareAlike 3.0. These word frequency lists were generated through scripts which excerpt data from the Open (movies) Subtitles Database at http://opus.lingfil.uu.se/OpenSubtitles2012.php . See https://invokeit.wordpress.com/about/ for further explanation

5. 113809of.fic from Moby Project [15, 16].
113,809 words. A list of words permitted in crossword games such as Scrabble(tm). Compatible with the first edition of the Official Scrabble Players Dictionary(tm).

6.USDW -- /usr/share/dict/words
479,828 words. The historic UNIX/Linux spell checker [17,18]. The versions in current Linux distributions seem to be largely based on the SCOWL project [19].

7. Awords -- Academic Words from Corpus of Contemporary American English [20].
18559 words. The COCA project at Brigham Young University provides some information (like this vocabulary of words derived from academic journals) free of charge. The academic words represent a source of reliable entries though under-represented in word frequency analyses stemming from other sources.

8. BNCwords -- Words from the British National Corpus.
131237 words The British National Corpus (BNC) [21] is a “100 million word collection of samples of written and spoken language from a wide range of sources, designed to represent a wide cross-section of British English, from the late twentieth century.” The subset used here: BNCwords is a subset of the British National Corpus provided by Adam Kilgariff as described at http://www.kilgarriff.co.uk/bnc-readme.html.

9. FRELI -- http://www.nkuitse.com/freli/
73177 words. "FRELI (the Free Repository of English Lexical Information) ..." This is release 20090227 of FRELI (the Free Repository of English Lexical Information), a freely redistributable list of English words with associated information (parts of speech, alternate spellings, etc.). Creative Commons Attribution License, version 2.0.

10. AllenW -- from Allen's Synonmyms and Antonyms by F. Sturges Allen.
56077 words. 1920 Published by Harper and Bros., hence in the public domain. See https://archive.org/details/allenssynonymsan00alle. Downloaded from the Gutenberg Project.

11. SouleW -- from A Dictionary Of English Synonymes And Synonymous Or Parallel
Expressions Designed As A Practical Guide To Aptness And Variety Of Phraseology By Richard Soule Boston: 1871.
27417 words. In the public domain and downloaded from the Gutenberg Project.

12. FallowsW -- from A Complete Dictionary Of Synonyms and Antonyms Or Synonyms
and Words of Opposite Meaning. 1898 by Rev. Samuel Fallows, A.M., B.D.
19474 words. Public domain and accessed from the Gutenberg Project as digitized and reset by Steve Wood 2016.

13. FernW -- English Synonyms and Antonyms With Notes on the Correct Use of Prepositions By James C. Fernald, L.H.D. Nineteenth edition, Funk & Wagnalls Company New york and London, 1896
16132 words. In the public domain and accessed from the Gutenberg project.

14. PutW -- Putnam's Word Book
Putnam's Word Book. A Practical Aid in Expressing Ideas through the Use of an Exact and Varied Vocabulary (Under the title Synonyms, Antonyms, and Associated Words). Louis A. Flemming. Copyright, 1913 By G. P. Putnam's Sons.
29732 words. In the public domain and accessed from the Gutenberg project.

15. 2Words 2of12full.txt
48564 words. From the SCOWL project [19]. Specifically, it comes from the 12Dicts package of Alan Beale.
The file 2of12full.txt contains the all words appearing in more than than one of Alan Beale's source dictionaries.

16. W2Words BYU COCA ngrams (2 words).
68784 words. A word list derived from the 2word ngrams from COCA. The COCA project [20] makes available for free, selected ngram data presenting the frequency of cooccurrence of pairs of English words.

As can be observed, these resources are quite heterogeneous, concerning their dates of origin as well as the methodologies by which they were assembled or harvested. Some are likely quite well-curated, with the dictionary makers having painstakingly deliberated over the entries. However, with some of the older resources, and carefully curated resources, there are OCR errors. With some of the more modern resources, the nature of harvesting-based methodology has allowed certain amounts of noise to enter the data – such is likely to be the case with gathering data from garden variety users of the language.
A2. Various idiosyncracies associated with these resources
At first glance, it might seem straightforward to simply form the set theoretic union of the sixteen word lists described in the earlier section. In unix/linux, the comm command is built precisely to examine intersections and unions of the lines of two files. [23]
In the earlier version of the FRELI project [5], within the first screenful of words is the following:
abbé
This particular resource uses “HTML character entities” like “é” to represent the Unicode character: é. That is, by “abbé “is meant “abbé” . Some of the files followed this convention while others used the actual Unicode characters. Accordingly, a script needed to be written convert HTML entities to their Unicode equivalents.
Initially, resources were scanned for such characters, using a simple grep. Displaying the actual character next to the encoding required a bit of tedium for the translation. (The program UniTrans, described below).
	Finding and replacing HTML entities used in resource #3 WebsUni

	Command: paste <(grep -o "&[^&;]*;" WebsWords|sort|uniq -c) <(for i in `grep -o "&[^&;]*;" WebsWords|sort|uniq`; do echo $i `echo $i|./UniTrans`; done)|awk '{print $1, $2, $4}'
Output:

	7 á á
6 â â
528 æ æ
5 à à
1 ã ã
8 ä ä
14 ç ç
232 é é
18 ê ê
41 è è
174 ë ë
	1 î î
14 ï ï
15 ñ ñ
1 ó ó
7 ô ô
179 œ œ
152 ö ö
3 û û
1 ù ù
12 ü ü

As we could find nothing in the standard Linux distribution to do this , the program UniTrans is merely a chain of sed substitution commands:

sed '
s/á/á/g;
s/â/â/g;
s/æ/æ/g;
s/Æ/Æ/g;
s/à/à/g;
s/ã/ã/g;
s/ä/ä/g;
s/ç/ç/g;
s/Ç/Ç/g;
s/é/é/g;
s/É/É/g;
s/ê/ê/g;
s/è/è/g;
s/ë/ë/g;
s/î/î/g;
s/ï/ï/g;
s/ñ/ñ/g;
s/ó/ó/g;
s/ô/ô/g;
s/œ/œ/g;
s/Œ/Œ/g;
s/ö/ö/g;
s/û/û/g;
s/ù/ù/g;
s/ü/ü/g;'

Another of the problems is the handling of proper names. Some don’t include them; others do, but signal them with initial capital letters. Still others include many word tokens twice: once capitalized and once not (for example “the” and “The” both being included in the word list). Our general approach to this has been to convert all characters (including such things as ‘Æ’ and ‘æ’) to lowercase. It would require manual intervention to discriminate between proper names that had been converted to lowercase by a particular author from “regular” words, so, no attempt to “cleanse” the actual words themselves was made.
Additionally, it was found that some resources (like the British National Corpus) had multiple entries for words, based on the different sense, or part of speech that the word (like “left” as either an adjective or a verb) might have. Hence, sorting each of the files and running it through uniq (which removes duplicates) was essential.
Some of the files came with carriage return + new line sequences between the words, while others used the standard Unix convetion of just the “\n” as the record delimiter. In order to merge files, it was important that this be standardized! Some, like McomX and WebsUni allow certain multi-word entries (like ad hoc) while others have only one “word” per lexical entry.
Finally, after the basic ground rules of the files (and encodings of the files) had been standardized, it was time to compare these datasets. First, we present a cursory view of the sizes of each resource:
$ wc McomX MSinX WebsUni EngWords MoffX USDW Awords BNCwords F09u AllenW SouleW FallowsW FernW PutW 2Words W2Words
 74550 89925 730682 McomX
 354983 354983 3712683 MSinX
 98532 101505 962913 WebsUni
 456631 456631 4034760 EngWords
 113809 113809 1016714 MoffX
 479828 479828 4953680 USDW
 18559 18559 169241 Awords
 131237 131236 1163970 BNCwords
 73735 73735 759817 F09u
 56077 56077 485918 AllenW
 27417 27417 251972 SouleW
 19474 19474 189341 FallowsW
 16132 16132 140345 FernW
 29732 29732 274018 PutW
 48564 48564 445085 2Words
 68784 68784 603383 W2Words
2068044 2086391 19894522 total

Next, a partial attempt to view the redundancy and overlap of pairs of these resources was made. For two resources, like WebsUni and BNCwords, the comm command can be used to determine the size of the intersection of the two word lists.
Specifically, in this case
$ comm -12 WebsUni BNCwords|wc
reveals that only 29823 words are in common to the 98532 words in WebsUni and the 131237 words in BNCwords. That number is entered into the table in the lower triangular portion of the matrix where the two meet. Where WebsUni intersects itself, there is listed the total size of the resource, for easy reference.
The comm command can also be used to form differences between two sets (WebsUni – BNCWords or BNCWords - WebsUni). The smaller of these two numbers is represented in the upper diagonal portion of the matrix. Not all of these analyses were performed, since the overlap data (containing intersections) gave the bulk of the information sought about the degree of redundancy between the resources.
	
	McomX
	MSinX
	WebsUni
	EngWords
	MoffX
	USDW
	Awords
	BNCwords
	F09u
	AllenW
	SouleW
	FallowsW
	FernW
	PutW
	2Words
	W2Words

	McomX
	74550
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	MSinX
	46940
	354983
	
	
	2589
	3662
	
	
	
	
	
	
	
	
	
	

	WebsUni
	36946
	81824
	98532
	
	
	
	
	68709
	
	
	
	
	
	
	
	

	EngWords
	33590
	98423
	38691
	456631
	
	
	
	
	
	
	
	
	
	
	
	

	MoffX
	33977
	111220
	
	66987
	113809
	
	
	
	
	
	
	
	
	
	
	

	USDW
	
	351321
	84285
	99411
	
	479828
	
	
	
	
	
	
	
	
	
	

	Awords
	
	
	
	16975
	
	
	18559
	
	
	
	
	
	
	
	
	

	BNCwords
	28325
	65487
	29823
	78863
	49668
	69525
	17521
	131237
	
	
	
	
	
	
	
	

	F09u
	
	
	40122
	39463
	
	63988
	15990
	33083
	73735
	
	
	
	
	
	
	

	AllenW
	25570
	38024
	30149
	28349
	40147
	40147
	12383
	23525
	26224
	56077
	
	
	
	
	
	

	SouleW
	17541
	
	20309
	
	20221
	25266
	
	
	
	18348
	27417
	
	
	
	
	

	FallowsW
	12670
	
	14089
	
	
	17152
	
	
	
	13683
	13668
	19474
	
	
	
	

	FernW
	
	
	
	
	
	13744
	
	
	9595
	10019
	10103
	8474
	16132
	
	
	

	PutW
	
	
	
	
	
	28457
	
	
	21963
	19912
	
	
	
	29732
	
	

	2Words
	
	40627
	
	36356
	32599
	47058
	
	
	33846
	22608
	18003
	
	
	19556
	48564
	

	W2Words
	22614
	46694
	
	57018
	
	48685
	
	
	25457
	
	
	
	
	
	26608
	68784

As we compared and contrasted these various sets of words, several of the idiosyncrasies of the word lists became apparent. A cursory analysis of the UNIX words, USDW, for example reveals something that all who have looked at that resource probably realize: there are a lot of things that don’t look like words, for example:
$ head -12 USDW|tail -2
2,4,5-t
2,4-d
Given that the file’s history is not just for use in spell-checking but also for validating that passwords are “secure”, it makes some sense that many things in it would not be conventional words. While a typical unabridged dictionary of English might have 150,000 words, the nearly half a million entries in USDW are certain to have many oddities. An analysis of the length of words in USDW is revealing containing words of length 29, 30, 31 and even 45 including for example: ‘dichlorodiphenyltrichloroethane’, ‘half-embracinghalf-embracingly’ and ‘pneumonoultramicroscopicsilicovolcanokoniosis’ [24]
An analysis of the length of words in USDW is revealing:
$ cat USDW|awk '{print NF}' FS=""|sort -n|uniq -c

 53 1
 1271 2
 6221 3
 13208 4
 25104 5
 41699 6
 53944 7
 62334 8
 62615 9
 54667 10
 46510 11
 37583 12
 27976 13
 19326 14
 12160 15
 7137 16
 4014 17
 2010 18
 1055 19
 508 20
 240 21
 103 22
 50 23
 19 24
 9 25
 2 26
 3 27
 2 28
 2 29
 1 30
 1 31
 1 45

This shows word lengths that are generally typical of English words (varying between 2 and 15 letters, but there there are some really long words too:
$ cat USDW|awk 'NF> 25 {print $0}' FS=""

antidisestablishmentarianism
cyclotrimethylenetrinitramine
dichlorodiphenyltrichloroethane
electroencephalographically
half-embracinghalf-embracingly
hydroxydehydrocorticosterone
hydroxydesoxycorticosterone
Mentor-on-the-Lake-Village
microspectrophotometrically
pneumonoultramicroscopicsilicovolcanoconiosis
straight-from-the-shoulder
trinitrophenylmethylnitramine

“Pneumonoultramicroscopicsilicovolcanoconiosis”, by the way, is “a word invented by the president of the National Puzzlers' League as a synonym for the disease known as silicosis. It is the longest word in the English language published in a dictionary, the Oxford English Dictionary, which defines it as "an artificial long word said to mean a a lung disease caused by inhaling very fine ash and sand dust. “ [24]

The BNCwords list (from Oxford University, of all places) contains such entries as

$0.0090497
00.00z
+0.068
0.1&ins
031–469
0.5°c
⅛pt
£100,000-a-year
a.agassizii
adrichem-boogaert
aef-1&agr

The BYU COCA list had some oddities as well. The list contained about 6000 words including ‘backsplash’ and ‘baby-boomer’ that were not in the 15 other dictionaries. But looking deeper, we found a curiosity: eleven words that contain ‘@’ as a letter. Each of these appeared to be the email address of a journalist (e.g., ‘talk@npr.org’): rather an odd choice for inclusion in a list of words.
While one can certainly imagine rules to assist one in culling these various resources to reduce some of the pandemonium, human curation is ultimately the only key to properly cleansing the lists of the obvious nonwords. The problem of course, is that one person’s obvious nonword may be perfectly legitimate to another. Ultimately, by using the approach of 12Dicts package of Alan Beale (as in resource # 15, 2Words), we may view not just the word’s frequency of usage within the language, but the number of lexical resources in which it appears as a good indicator of the word’s validity. We will see in Section II still more reasons (probably stemming mainly from foreign words used in English texts) to take these data with a bit of suspicion. Nonetheless, if a word appears in 2 or more of the dictionaries, then it is far less likely, it would seem, to be “noise” of one sort or another.
Next, the union of all sixteen dictionaries was created:
$ cat McomX MSinX WebsUni EngWords MoffX USDW Awords BNCwords F09u AllenW SouleW FallowsW FernW PutW 2Words W2Words|sort|uniq -c >WordsInManyPlaces

$ wc WordsInManyPlaces
 946943 1911581 16794870 WordsInManyPlaces
When this process was completed WordsInManyPlaces contains about 1 million distinct “words” as well as a number representing the number of resources in which that word occurs. The latter data is particularly interesting, since it represents the “wordiness” of a word: that is how many of these resources actually attest to this lexical entry as being an actual word.
A3. An amalgamated approach to a “meta-dictionary”
By combining the talents and efforts (both manual and digital) of many different lexicographers, one can perhaps arrive at a meta-resource that overcomes some of the limitations of each. While a simple “union” of word lists, might compound the errors of each, knowing the degree of unanimity associated with an entry is perhaps a better indicator of its validity than mere usage. Many lexicographers have made lists of frequenty misused words , implying that not all uses are considered valid, and that some “misuses” are indeed “frequent.” People rely on dictionaries to be “authoritative.” There seems to be a historical unwillingness to allow the concept of a “word” to reflect momentary whims. At the same time, language changes. While few people over the age of forty know the meaning of “parkour” (an extreme sport), almost all of my students (based on in-class surveys) do. At the same time, I have observed that few of my students know the meaning of the word “platen” (a part of a typewriter) .
While the actual speakers of a language might be guilty of all manner of slang, informality and even intentional innovation, the lexicographer is generally interested more in studying “the language” than people’s abuse of it (intentional or otherwise). Nonetheless one can posit that “abuse” is often one of the driving forces which compels the changes in language that make it so very interesting.
We have provided at http://cs.sru.edu/~ddailey/cgi/Wotsa?15 is a meta resource that, for a given number 0<n<17 returns a random sample of words that are in precisely n of the sixteen word lists described herein. If one seeks words that are unanimously accepted, then “16” can be chosen as the value of theparameter. If one’s threshold for lexicographic authenticity is considerably more relaxed, then one might choose 1, and see samples of the half million words that are in only one of the dictionaries.
Here are some data showing the number of words in n dictionaries as a function of n:
	$ awk '{print $1}' WordsInManyPlaces |sort -n|uniq -c

	 539604 1
 192198 2
 93214 3
 34912 4
 20992 5
 18011 6
 9651 7
 6755 8
 5407 9
 4495 10
 3734 11
 3373 12
 3038 13
 3088 14
 3294 15
 5177 16

Observe that a) the number of words in only one word list is larger than the size of any one of the word lists; b) the number of words common to all 16 is only about 5000. There is, from these resources, substantially less inter-rater reliability concerning our lexicon than one might imagine.
Following, for sake of illustration, such that the reader might get a sense of just what sorts of words belong to each of these sixteen categories of “wordiness,” are random examples of each.
$ for i in `seq 1 16`; do echo $i ; shuf -n 10 <(grep ^[[:space:]]*$i[[:space:]] WordsInManyPlaces); echo -----------------------------; done

 1 quick-speaking
 1 shwei
 1 patchway
 1 tribout
 1 esaka
 1 GRI
 1 ferch
 1 surgirá
 1 sapajo
 1 twojego

 2 unprotect
 2 sheaveless
 2 scurfer
 2 disconnecter
 2 ophthalmetrical
 2 sociol.
 2 coercement
 2 mastroianni
 2 thornlessness
 2 prigdom

 3 lanosities
 3 irrupts
 3 demotions
 3 Naraka
 3 inglesa
 3 moonet
 3 deregulations
 3 dulcimers
 3 disconnector
 3 bestraught

 4 first-aid
 4 moulins
 4 serenatas
 4 ries
 4 citrons
 4 defoliator
 4 quadrilocular
 4 coziest
 4 cyanamide
 4 immortalizing

 5 welly
 5 chromed
 5 merozoite
 5 phycology
 5 haling
 5 ukraine
 5 bimodal
 5 lamas
 5 spindleshanks
 5 porkers

 6 trundled
 6 hundredths
 6 bespangled
 6 challenges
 6 autosuggestion
 6 shirts
 6 decennium
 6 proteus
 6 metachronism
 6 battlefields

 7 landscapist
 7 quintal
 7 captiously
 7 gastrocnemius
 7 heathery
 7 tantalus
 7 lowe
 7 tonsured
 7 compounds
 7 speculations

 8 forewarning
 8 poppa
 8 scowling
 8 oxygenation
 8 carney
 8 vicariate
 8 cochleate
 8 presser
 8 hyperspace
 8 mouthwash

 9 lefty
 9 sideshow
 9 wheaten
 9 nosed
 9 tyne
 9 introducing
 9 genealogical
 9 poi
 9 cess
 9 summing

 10 diatonic
 10 incase
 10 adulterated
 10 chimp
 10 dyslexia
 10 phoneme
 10 emplacement
 10 titillation
 10 sidestep
 10 drifter

 11 lands
 11 endoscope
 11 devilry
 11 whoa
 11 scupper
 11 caduceus
 11 milkweed
 11 rotor
 11 guesswork
 11 cafeteria

 12 imbroglio
 12 archery
 12 skyward
 12 shamefaced
 12 thence
 12 trophic
 12 prosody
 12 whiskey
 12 timekeeper
 12 starched

 13 matronly
 13 consciously
 13 biscuit
 13 groundless
 13 limbo
 13 stairs
 13 cubicle
 13 merger
 13 assimilation
 13 orgasm

 14 daze
 14 tobacco
 14 dissatisfied
 14 patriotic
 14 adjoin
 14 mongrel
 14 invariable
 14 nightfall
 14 totter
 14 brat

 15 crusty
 15 evacuate
 15 wane
 15 nutritious
 15 hitch
 15 recourse
 15 confirmed
 15 inducement
 15 tavern
 15 nasty

 16 garb
 16 impulsive
 16 sauce
 16 obey
 16 actuality
 16 physical
 16 sever
 16 question
 16 communicative
 16 obliterate

As a quasi-practical example of the use of these data, in 2015 Dailey created a game using some of them. I wanted to make a word seach game, in which words were randomly selected, and from which people could find collections of words by traversing letters in geographic proximity to one another. To guarantee that the game could be solved, the letters would be chosen from actual words sampled randomly. But at the same time, players could select letters in any order, so that anagrams of words could be recognized by the program. The reader can experiment with the game here: http://cs.sru.edu/%7Eddailey/slidewords.htm . The key to such things seems to be that players (self included) are displeased when they find words, but the software fails to recognize that it is a word. At the same time, one of my colleagues said he liked the game and would be interested if his grandchildren could play. That implied to me that I should take some care not to include the standard obscenities in the game’s vocabulary. The problem I encountered was that if I set the threshold high enough to exclude obvious obscenities, then it was also so high that many well-known and perfectly legitimate seeming words would be excluded. I spent some time in the first few weeks of testing the program, manually adding words when I found they were not present! There seems to be no substitute for hand-curation of these resources.
Section IB Thesauruses
We won’t go into great detail in this description except to say that we’ve done far more work than we can summarize in this venue, and that our plans for moving further are extensive.
First, it is perhaps important to realize that Roget, upon whose work many of the lexical resources of the web are based, had his own somewhat idiosyncratic theories of semantics. Words, according to Roget, could be classified taxonomically. They belonged in categories. And Roget’s thesaurus, accordingly, tending to list for any given word, hundreds of “synonyms.” All mammals, for example are found in the same category, and are therefore, seen as synonyms of one another. In my work in the 1980’s on synonymy I wrote about the “Rogetian distance” between two words based on the graphic theoretical minimum number of links needed to be traversed in a synomy graph. Alas, Roget’s actual thesaurus was uniquely ill-suited for use in such an exercise because of the great bushiness of the graph. Nodes in that graph simply have too many neighbors. On the other hand, the other more up-to-date thesauruses are all, still, under copyright.
Hence around 2000, I came up with a “bootstrapped thesaurus” which slightly improved upon Roget’s by taking the Grady Ward thesaurus [15] which itself was largely derived (so it appears, though a statement of Ward’s actual methodology does not seem to exist) from Roget’s. The bushiness and the mammals sort of show the family resemblance. My idea was fairly simple: the degree to which two words share a preponderence of the same synonyms gives us a better reflection on the strength of their synonymy. So in the resource available since 2000 at http://granite.sru.edu/~ddailey/cgi/hyphens?wild. In the “relative” section of that web site, is where one can see this approach at work. When one enters a word like “wild” one sees the best fourteen synonyms, where for the word wild, each of the words which cooccur with wild somewhere in the relational databse, is itself looked up, and we see the degree to which those words continually reappear as neighbors of the neighbors of “wild.” Some of this work was presented in a presentation by Shirk and Dailey , 2011. That approach has recently been extended through a fairly complex graph theoretic consideration in which the outbound and inbound connections for given entries are compared so as to diversify the relatives of a given node. The results of that approach can be seen in the section of http://granite.sru.edu/~ddailey/cgi/hyphens?wild labeled “new approach.”
However, with the discovery of new lexical resources (new thesauruses coming into the Gutenberg project, namely resources 10,11,12,13 and 14) the hope and eventual plan is to consolidate the strength of the connection between word pairs by considering in addition to the measures above, with the consensual data offered by multiple authors. Refining a core vocabulary suitable for the creation of such a thesaurus is a preliminary step, but fortunately the work presented in section IA largely accomplishes this particular goal.
Section IIIC Rhythms
Rhythms of the language
Alphabets, syllabaries, idiographies – the choice of a writing system may be influenced by a language’s cadence.
The choice of how a language invents a Pig Latin may as well.
Consider the following:
forty 5
ghost 5
gipsy 5
glory 5
mopsy 5
almost 6
begirt 6
biopsy 6
chintz 6
dehort 6

On probabiliities of monotonic (and other) letter sequences
Motivation: there are more words whose letters are in alphabetical order than whose letters are in inverse alphabetical order:
#(alpha order)
$ cat $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i < $(i+1)) c++ }; if (c>NF-2) print $0,NF }' FS=""|sort -nk2|wc
 212 424 1362
#(inverse alpha order)
$ cat $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i > $(i+1)) c++ }; if (c>NF-1) print $0,NF }' FS=""|sort -nk2|wc
 145 290 914
Examples:
$ cat $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i < $(i+1)) c++ }; if (c>NF-2) print $0,NF }' FS=""|sort -nk2|tail
forty 5
ghost 5
gipsy 5
glory 5
mopsy 5
almost 6
begirt 6
biopsy 6
chintz 6
dehort 6
$ cat $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i > $(i+1)) c++ }; if (c>NF-1) print $0,NF }' FS=""|sort -nk2|tail
polka 5
solid 5
sonic 5
spoke 5
theca 5
tonic 5
unfed 5
wrong 5
sponge 6
vomica 6

This observation led to an investigation of “lexical letter rhythms,” as well as curiosity about
a) whether the above points to some “preference” of monotonically increasing sequences, or simply to the possibility that more English words begin with letters early in the alphabet, hence making increasing sequences more probably
b) whether the rhythms of monotonicity in letter sequences favor certain patterns more than others
c) the extent to which all of this can be explained by pure randomness.
Let ∈ {a..z}* with ||=2 and  =a1a2. (In English, this just means let the symbol alpha refer to a string of two lowercase letters (a1 and a2) from the English alphabet.) Let us write a1 < a2 to mean that a1 is alphabetically prior to a2 .
 If  is chosen at random from {a..z}*, then P(a1 = a2) = 1/26 and P(a1 < a2)= ½ (25/26) ≈ .48 .
In actuality, of the 43 two letter words in w$:
$ egrep ^[a-z]{2}$ $w

ah
am
an
as
at
ax
ay
be
bo
by
do
em
en
ex
fa
go
ha
he
id
if
in
is
it
la
lo
me
mi
my
no
of
oh
on
or
os
ox
pi
re
so
to
up
us
we
ye

$ egrep ^[a-z]{2}$ $w|wc
 43 43 129
24 of them have a1 < a2, while the other 19 have a1 > a2 . This is not likely outside the expectations of chance.
For longer words, though, the situation is more complex. Let’s consider three letter sequences, both English words and nonwords.
For arbitrary letter sequences , ∈ {a..z}* with ||=2 and  =a1a2 … an ,we call a letter sequence monotonic increasing if ai < aj for all i and j less than n+1. It is monotonic nondecreasing if ∀ i,j ai ≤ aj .
Examples:
 =abc is monotonic increasing, but is not a word.
his is a monotonic increasing word.
accent is a nondecreasing word
zone is a decreasing word.
yucca is a nonincreasing word.

$ egrep ^.{4}$ $w|awk '{for (i=1;i<NF;i++) {if ($i>$(i+1))s=s""0;else if ($i<$(i+1))s=s""2;else s=s""1};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|sort -k2|uniq -cf1|sort –n
$ shuf -ern 8000 {a..z}|xargs -L 4|sed 's/\ //g'|awk '{for (i=1;i<NF;i++) {if ($i>$(i+1))s=s""0;else if ($i<$(i+1))s=s""2;else s=s""1};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|sort -k2|uniq -cf1|sort -n|tail -18

 10 blls 212	1 eery 122
 11 bbcz 122	1 ooze 120
 11 hhfd 100	8 miff 001
 16 agqq 221	19 bell 221
 18 dccx 012	21 ally 212
 22 aame 120	23 feed 010
 24 ddbx 102	27 abba 210
 25 ajjh 210	38 eddy 012
 25 cabb 021	39 biff 201
 28 amhh 201	47 ball 021
 64 abcy 222	50 life 000
 72 hfea 000	63 abet 222
 197 bafn 022	174 able 220
 205 ecbd 002	190 aged 200
 206 abqj 220	202 fear 002
 222 amja 200	248 babe 022
 408 bazq 020	365 afar 202
 417 aeaf 202	475 bake 020

$ paste <(shuf -ern 25000 {a..z}|xargs -L 6|sed 's/\ //g'|awk '{for (i=1;i<NF;i++) {if ($i>$(i+1))s=s""0;else if ($i<$(i+1))s=s""2;else s=s""1};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|sort -k2|uniq -cf1|sort -n|tail -20) <(egrep ^.{6}$ $w|awk '{for (i=1;i<NF;i++) {if ($i>$(i+1))s=s""0;else if ($i<$(i+1))s=s""2;else s=s""1};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|sort -k2|uniq -cf1|sort -n|tail -20)
 64 gazfec 02000	65 adagio 20222
 70 acadpw 20222	66 health 00220
 78 aglbgo 22022	67 backup 02220
 78 awgfck 20002	69 abduce 22202
 90 ihcxut 00200	101 amical 20002
 101 dabnxd 02220	108 abrade 22022
 115 atrauv 20022	108 cajole 02200
 122 bamuih 02200	109 ballad 02102
 124 abriet 22002	134 abased 20200
 153 ebaltp 00220	146 abacus 20220
 157 bahehv 02022	148 abject 22002
 169 abnfwk 22020	148 alight 20022
 171 akauob 20200	176 ablate 22020
 189 asnlol 20020	181 afeard 20020
 193 baqrbe 02202	183 featly 00202
 199 gdayfp 00202	237 backer 02202
 213 acadvq 20220	254 bakery 02022
 231 caztov 02002	270 banger 02002
 293 cawlnc 02020	317 agency 20202
 304 abapcl 20202	346 balize 02020

02102 (ballad)
Compare its frequency (109 words out of 4321 six letter words) with the following based on a similar count ($ echo "4321 * 6"|bc = 25926) of six letter random words:
$ shuf -ern 25926 {a..z}|xargs -L 6|sed 's/\ //g'|awk '{for (i=1;i<NF;i++) {if ($i>$(i+1))s=s""0;else if ($i<$(i+1))s=s""2;else s=s""1};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|sort -k2|uniq -cf1|sort -n|grep 02102
 11 ihvviw 02102
$ egrep ^.{6}$ $w|awk '{for (i=1;i<NF;i++) {if ($i>$(i+1))s=s""0;else if ($i<$(i+1))s=s""2;else s=s""1};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|grep 02102

ballad 02102
ballet 02102
banner 02102
barrel 02102
barren 02102
barrow 02102
basset 02102
batten 02102
batter 02102
caller 02102
capper 02102
carrot 02102
dagger 02102
dapper 02102
fallen 02102
farrow 02102
fatten 02102
fellah 02102
fennel 02102
ferret 02102
fetter 02102
gaffer 02102
galley 02102
gammer 02102
garret 02102
hammer 02102
happen 02102
harrow 02102
hatter 02102
jennet 02102
kennel 02102
killer 02102
kipper 02102
kisser 02102
kitten 02102
lammas 02102
lappet 02102
latter 02102
lerret 02102
lessen 02102
lesser 02102
lessor 02102
letter 02102
litter 02102
mallet 02102
mammal 02102
manner 02102
marrow 02102
matter 02102
miller 02102
millet 02102
mirror 02102
mitten 02102
mizzen 02102
narrow 02102
natter 02102
nipper 02102
pallet 02102
parrot 02102
passim 02102
patten 02102
patter 02102
pellet 02102
pepper 02102
pillar 02102
potter 02102
powwow 02102
rammer 02102
rappel 02102
rattan 02102
reggae 02102
rillet 02102
rotten 02102
rotter 02102
sapper 02102
seller 02102
setter 02102
simmer 02102
sinner 02102
sippet 02102
sirrah 02102
sitter 02102
sorrel 02102
sorrow 02102
tanner 02102
tassel 02102
tatter 02102
teller 02102
tenner 02102
tennis 02102
terret 02102
terror 02102
tetter 02102
tiller 02102
tippet 02102
titter 02102
topper 02102
totter 02102
valley 02102
vassal 02102
vennel 02102
vessel 02102
wallet 02102
warren 02102
winner 02102
yammer 02102
yarrow 02102
zaffer 02102
zipper 02102

$ paste <(shuf -ern 41000 {a..z}|xargs -L 8|sed 's/\ //g'|awk '{for (i=1;i<NF;i++) {if ($i>$(i+1))s=s""0;else if ($i<$(i+1))s=s""2;else s=s""1};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|sort -k2|uniq -cf1|sort -n|tail -20) <(egrep ^.{8}$ $w|awk '{for (i=1;i<NF;i++) {if ($i>$(i+1))s=s""0;else if ($i<$(i+1))s=s""2;else s=s""1};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|sort -k2|uniq -cf1|sort -n|tail -20)
 59 cayeaeyh 0200220	59 apiarian 2002002
 60 ageamwpu 2002202	61 abjectly 2200202
 63 hdauctlc 0020200	63 babushka 0220020
 64 ajcbsdsy 2002022	64 alarmist 2020022
 65 cbfyfrsk 0220220	66 headland 0022020
 67 abvpdzst 2200202	71 backdrop 0220202
 69 afbudzfa 2020200	74 alacrity 2022022
 75 ihaqpvuy 0020202	75 amenable 2020220
 76 dbdcprnw 0202202	87 barbican 0202002
 78 dcogogep 0202002	90 balister 0202202
 81 acobrqsf 2202020	91 alkahest 2002022
 82 ajfocfrp 2020220	93 acarpous 2020020
 86 agcfxhvb 2022020	93 bargeman 0200202
 87 baqnclkx 0200202	102 actively 2202022
 91 canjpghr 0202022	123 acanthus 2022020
 94 ajedfewl 2002020	132 ablation 2202020
 94 aoevpozg 2020020	135 bakeshop 0202022
 100 baetkvdp 0220202	139 alfresco 2020202
 154 dcectqxe 0202020	145 alienage 2002020
 166 ajgteico 2020202	227 balanced 0202020

$ egrep ^.{4}$ $w|awk 'BEGIN { C = "" ; for (i = 0 ; ++i < 256 ;) C = C sprintf ("%c" , i) };{for (i=1;i<NF;i++) {s=s"."(index(C,$(i+1))-index(C,$i))};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|sort -k2|uniq -cf1|sort -n|tail -20
 2 hide .1.-5.1
 2 john .5.-7.6
 2 lean .-7.-4.13
 2 link .-3.5.-3
 2 lion .-3.6.-1
 2 loaf .3.-14.5
 2 loch .3.-12.5
 2 meed .-8.0.-1
 2 milt .-4.3.8
 2 mold .2.-3.-8
 2 molt .2.-3.8
 2 opal .1.-15.11
 2 open .1.-11.9
 2 pail .-15.8.3
 2 pelt .-11.7.8
 2 proa .2.-3.-14
 2 punk .5.-7.-3
 2 spec .-3.-11.-2
 3 abba .1.0.-1
 3 lang .-11.13.-7
$ egrep ^.{4}$ $w|awk 'BEGIN { C = "" ; for (i = 0 ; ++i < 256 ;) C = C sprintf ("%c" , i) };{for (i=1;i<NF;i++) {s=s"."(index(C,$(i+1))-index(C,$i))};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|grep 1.0.-1
abba deed noon.1.0.-1
lang perk shun.-11.13.-7
$ egrep ^.{3}$ $w|awk 'BEGIN { C = "" ; for (i = 0 ; ++i < 256 ;) C = C sprintf ("%c" , i) };{for (i=1;i<NF;i++) {s=s"."(index(C,$(i+1))-index(C,$i))};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|grep "\.3\.0"
add bee ill loo.3.0

$ egrep ^.{5}$ $w|awk 'BEGIN { C = "" ; for (i = 0 ; ++i < 256 ;) C = C sprintf ("%c" , i) };{for (i=1;i<NF;i++) {s=s"."(index(C,$(i+1))-index(C,$i))};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|sort -k2|uniq -cf1|sort -n|tail -5
 1 zocle .-11.-12.9.-7
 2 chain .5.-7.8.5
 2 cheer .5.-3.0.13
 2 opera .1.-11.13.-17
 2 pecan .-11.-2.-2.13

$ egrep ^.{5}$ $w|awk 'BEGIN { C = "" ; for (i = 0 ; ++i < 256 ;) C = C sprintf ("%c" , i) };{for (i=1;i<NF;i++) {s=s"."(index(C,$(i+1))-index(C,$i))};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|grep ".-11.-2.-2.13"
Etc. for opera, cheer, chain
pecan tiger .-11.-2.-2.13
opera stive .1.-11.13.-17
cheer jolly .5.-3.0.13
chain ingot .5.-7.8.5

Bigger dictionary ($T)
$ egrep ^.{7}$ $T|awk 'BEGIN { C = "" ; for (i = 0 ; ++i < 256 ;) C = C sprintf ("%c" , i) };{for (i=1;i<NF;i++) {s=s"."(index(C,$(i+1))-index(C,$i))};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|sort -k2|uniq -cf1|sort -n|tail -5
 1 zymotic .-1.-12.2.5.-11.-6
 1 zymurgy .-1.-12.8.-3.-11.18
 1 zyzzyva .-1.1.0.-1.-3.-21
 2 fortran .9.3.2.-2.-17.13 (FORTRAN)
 2 primero sulphur.2.-9.4.-8.13.-3
steeds tuffet .1.-15.0.-1.15
paopao testes .-15.14.1.-15.14
inkier purply .5.-3.-2.-4.13
alohas grungy .11.3.-7.-7.18
anteed bouffe .13.6.-15.0.-1
pinot .-7.5.1.5 unsty .-7.5.1.5
mocha .2.-12.5.-7 suing .2.-12.5.-7
labor .-11.1.13.3 shivy .-11.1.13.3
ebola .-3.13.-3.-11 herod .-3.13.-3.-11
cobra .12.-13.16.-17 freud .12.-13.16.-17
banjo .-1.13.-4.5 ferns .-1.13.-4.5

$ egrep ^[a-z]{3}$ $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i < $(i+1)) c++ }; if (c>NF-2) print $0,NF }' FS=""|sort -nk2|wc
 86 172 516
$ egrep ^[a-z]{3}$ $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i < $(i+1)) c++ }; if (c>NF-2) print $0,NF }' FS=""|head -30|xargs -L10
ace 3 act 3 ado 3 aft 3 ago 3 ail 3 aim 3 air 3 alp 3 amp 3
ant 3 any 3 apt 3 art 3 beg 3 bel 3 ben 3 bet 3 bey 3 bin 3
bis 3 bit 3 biz 3 bow 3 box 3 boy 3 buy 3 cop 3 cot 3 cow 3
Nondecreasing:
threes:
$ egrep ^[a-z]{3}$ $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i <= $(i+1)) c++ }; if (c>NF-2) print $0,NF }' FS=""|wc
 102 204 612
(includes, for example, eel, inn and moo that are not strictly monotonic)
$ echo {a..z}| sed 's/[]/*/g;s/z/z*/'
a*b*c*d*e*f*g*h*i*j*k*l*m*n*o*p*q*r*s*t*u*v*w*x*y*z*
$ grep ^`echo {a..z}| sed 's/[]/*/g;s/z/z*/'`$ $w|wc
 310 310 1496
$ grep ^`echo {a..z}| sed 's/[]/*/g;s/z/z*/'`$ $w|xargs -L10|head -5
a abbess abbey abbot abet abhor ably abort accent accept
access accost ace act add adder adept adit ado adopt
aegis affix afflux afoot aft agio aglow ago ah ail
aim air airy all alloquy allot allow alloy ally almost
alms alp am amp amps an annoy ant any apt
Nonincreasing:
$ grep ^`echo {z..a}| sed 's/[]/*/g;s/a/a*/'`$ $w|wc
 196 196 900
Only 196 of these, as opposed to 310 nondecreasing
$ grep ^`echo {z..a}| sed 's/[]/*/g;s/a/a*/'`$ $w|xargs -L10|tail -5
unfed up upon urge urn us use used via vie
void vomica we web wed wee weed wife wig wigged
woe woke wold wolf womb won woo wood woof wool
woon wrong x ye yea yob yoga yoke yolk yon
yucca yule yuppie zone zoo zoom

So, for a random string of length three to be monotonic increasing, we must have all three chars distinct. Of the 26^3 = 17576 strings of length three, 26* 25* 24 of them have three distinct chars. So P(3 distinct) = 26*25*24/26^3 ≈ .888. Once three distinct chars are chosen, each of the six orderings (abc, acb, bac, bca, cab and cba) is equally likely, and only one is monotonic increasing. Hence the probability of getting three chars, at random, to be monotonic increasing is about .148 . The same would be true of the probability of having three chars being monotonic decreasing.
Given that there are 587 three letter words in $w *, we’d expect (26*25*24/(6*26^3))*587 or about 86.83 to be monotonic increasing and the same number to be monotonic decreasing.
Sure enough, there are 86 increasing words:
$ egrep ^[a-z]{3}$ $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i < $(i+1)) c++ }; if (c>NF-2) print $0 }' FS=""|wc
 86 86 344

$ egrep ^[a-z]{3}$ $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i < $(i+1)) c++ }; if (c>NF-2) print $0 }' FS=""|tail -30|xargs -L15
fry gin gnu got guy him hip his hit hop hot how hoy imp ivy
jot joy lop lot low lox loy mop mow nor not now opt pry sty
But only 57 decreasing ones:
$ egrep ^[a-z]{3}$ $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i > $(i+1)) c++ }; if (c>NF-1) print $0 }' FS=""|wc
57 57 228
$ egrep ^[a-z]{3}$ $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i > $(i+1)) c++ }; if (c>NF-1) print $0 }' FS=""|tail -30|xargs -L15
sec she sib sic ski sob sod son spa tea ted the tic tie tod
toe tom ton urn use via vie web wed wig woe won yea yob yon

* $ egrep ^[a-z]{3}$ $w|wc
 587 587 2348
examples:
$ egrep ^[a-z]{3}$ $w|tail -45|xargs -L15
vim vow wad wag wan war was wat wax way web wed wee wem wen
wet who why wig win wit woe won woo wop wot wry yak yam yap
yaw yea yen yes yet yew yin yip yob yon you zap zip zit zoo

Four letter words
For four letters, the probability of four random letters being all different is
(26*25*24*23/(26^4)) ≈.785 .
Once all four letters are different, the likelihood of being monotonically increasing would be 1/24 (given 4! permutations of the letters, with only one of those being as desired).
(26*25*24*23/(26^4))/24≈ .0327.
$ egrep ^[a-z]{4}$ $w|tail -45|xargs -L15
word wore work worm worn wove wrap wren writ wynd yang yank yard yare yarn
yarr yaup yawl yawn yawp yean year yell yelp yerk yeti yipe yoga yogi yoho
yoke yolk yore your yule zany zarp zeal zebu zero zest zinc zone zoom zoot
$ egrep ^[a-z]{4}$ $w|wc
 1953 1953 9765
We would thus, expect about 1953 * .0327≈63.89 of the four letter words to increase alphabetically.
Sure enough,
$ egrep ^[a-z]{4}$ $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i < $(i+1)) c++ }; if (c>NF-2) print $0 }' FS=""|wc
 61 61 305

$ egrep ^[a-z]{4}$ $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i < $(i+1)) c++ }; if (c>NF-2) print $0 }' FS=""|xargs -L16
abet ably adit agio airy alms amps arty belt bent best bevy blot blow cent chin
chip chit chop chow city clot cloy copy cost cosy crux deft defy demo dent deny
dewy dint dirt dory doxy envy film fist flop flow flux fort foxy gilt gimp girt
gist glow gory hilt hint hist hops host knot know lost most nosy

However, again, the reversals seem not to hold up their end of the probability distribution:
$ egrep ^[a-z]{4}$ $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i > $(i+1)) c++ }; if (c>NF-1) print $0 }' FS=""|wc
 48 48 240

$ egrep ^[a-z]{4}$ $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i > $(i+1)) c++ }; if (c>NF-1) print $0 }' FS=""|xargs -L16
life mica olid pica pied plea poke pole pond rife role shed skid sled slid soda
sofa soke sold sole some song spec sped spic tied toga told tomb tome tone tong
trig trod upon urge used void wife woke wold wolf womb yoga yoke yolk yule zone

Five letter words:
$ egrep ^[a-z]{5}$ $w|wc
 2892 2892 17352
$ egrep ^[a-z]{5}$ $w|tail -36|xargs -L12
worth would wound woven wrack wrath wreak wreck wrest wring wrist write
wrong wrote wrung wryly xebec xenia xerox yacht yahoo yamen yearn yeast
yield yodel yokel young yours youth yucca zambo zebra zilch zippo zocle

Increasing:
$ egrep ^[a-z]{5}$ $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i < $(i+1)) c++ }; if (c>NF-2) print $0 }' FS=""|xargs -L12
abhor abort adept adopt aegis aglow befit begin begot below bijou chimp
deist deity dirty empty filmy first forty ghost gipsy glory mopsy

]$ egrep ^[a-z]{5}$ $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i < $(i+1)) c++ }; if (c>NF-2) print $0 }' FS=""|wc
 23 23 138
Decreasing:
$ egrep ^[a-z]{5}$ $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i > $(i+1)) c++ }; if (c>NF-1) print $0 }' FS=""|wc
 8 8 48
$ egrep ^[a-z]{5}$ $w|awk '{c=0; for (i=1; i<=NF; ++i) { if ($i > $(i+1)) c++ }; if (c>NF-1) print $0 }' FS=""|xargs -L12
polka solid sonic spoke theca tonic unfed wrong
Expectation:
About 2/3 of 5 letter sequences would have all five letters different:
((26*25*24*23*22/(26^5))) ≈ .6644.
But those 5 letters must all be in the proper order (which happens with probability only 1/5! or 1/120)
((26*25*24*23*22/(26^5))/120) ≈ 0.005536
With 2892 five letter words, then we’d expect
((26*25*24*23*22/(26^5))/120)* 2892 ≈ 16.011 for both increasing and decreasing.
Are variations as wide as 23 (increasing) and 8 (decreasing) within the realm of randomness?
Here are some random trials. The script generates 14460 chars in 2892 groups of five letter words and then sorts the words based on their internal rhythms (see more on this topic later). We restrict the output to the strictly increasing sequences (2222) or the scrictly decreasing ones (0000). A few trials are run just to give an idea

]$ shuf -ern 14460 {a..z}|xargs -L 5|sed 's/\ //g'|awk '{for (i=1;i<NF;i++) {if ($i>$(i+1))s=s""0;else if ($i<$(i+1))s=s""2;else s=s""1};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|sort -k2|uniq -cf1|sort -n|egrep "([02])\1\1\1"

 10 aboqy 2222
 15 rkiha 0000
 12 nhgcb 0000
 18 adkpq 2222
 12 aisuw 2222
 18 tngfe 0000
 11 acfst 2222
 23 igfba 0000
 13 aglvx 2222
 13 jhfea 0000
 15 nmjhf 0000
 18 acimz 2222
 14 mihfa 0000
 16 adflr 2222
 8 adhtz 2222
 18 roidc 0000

2892 * 5 = 14460
Sure enough, variations as wide as observed among real words are seen as entirely possible within the laws of chance.
Six
((26*25*24*23*22*21/(26^6))) ≈ 0.5366
((26*25*24*23*22*21/(26^6)))/720 ≈ 0.00074528404
$ egrep ^[a-z]{6}$ $w|wc
 4278 4278 29946
4278*((26*25*24*23*22*21/(26^6)))/720 ≈ 3.188 = expected number of monotonic (up or down) sequences for six letter strings.
$ expr 4278 "*" 6
25668
$ shuf -ern 25668 {a..z}|xargs -L 6|sed 's/\ //g'|awk '{for (i=1;i<NF;i++) {if ($i>$(i+1))s=s""0;else if ($i<$(i+1))s=s""2;else s=s""1};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|sort -k2|uniq -cf1|sort -n|egrep "([012])\1\1\1\1"

 4 aejkls 22222
 5 utokdc 00000
 2 abdhrs 22222
 3 ysonga 00000
 3 abltuv 22222
 3 wtoldc 00000
 1 eimpqv 22222
 2 vupkga 00000
 0 00000
 2 cefjmy 22222
 4 omjfea 00000
 6 aekqtx 22222
 3 ahmotv 22222
 3 toieca 00000
 4 pmhgfd 00000
 5 adfhln 22222

$ egrep ^[a-z]{6}$ $w|awk '{for (i=1;i<NF;i++) {if ($i>$(i+1))s=s""0;else if ($i<$(i+1))s=s""2;else s=s""1};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|sort -k2|uniq -cf1|sort -n|egrep "([012])\1\1\1\1"
 2 sponge 00000
 5 almost 22222

Seven
((26*25*24*23*22*21*20/(26^7)))≈ 0.4128
((26*25*24*23*22*21*20/(26^7)))/5040 ≈ 0.0000819
$ egrep ^[a-z]{7}$ $w|wc
 4854 4854 38832
4854 * ((26*25*24*23*22*21*20/(26^7)))/5040 ≈ 0.3975= expected number of monotonic (up or down) sequences for seven letter strings.
$ expr 4278 "*" 6
25668
$ egrep ^[a-z]{7}$ $w|awk '{for (i=1;i<NF;i++) {if ($i>$(i+1))s=s""0;else if ($i<$(i+1))s=s""2;else s=s""1};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|sort -k2|uniq -cf1|sort -n|egrep "([012])\1\1\1\1"
 1 dyspnea 200000
 2 obloquy 022222
 2 polecat 000002
$ egrep ^[a-z]{7}$ $w|awk '{for (i=1;i<NF;i++) {if ($i>$(i+1))s=s""0;else if ($i<$(i+1))s=s""2;else s=s""1};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|egrep "([012])\1\1\1\1"
dyspnea 200000
obloquy 022222
polecat 000002
sponger 000002
thirsty 022222
Demonstrates that there are no strictly monotonic sequences of length 7 in $w. In fact there are none of length seven or higher.
$ wc $T $w
 406712 406712 4158156 /home/ddailey/public_html/moby/mthes/TwoOrMore
 35916 35916 332173 /home/ddailey/public_html/words

In the much larger dictionary ($T), there are a couple:
$ egrep ^[a-z]{7}$ $T|awk '{for (i=1;i<NF;i++) {if ($i>$(i+1))s=s""0;else if ($i<$(i+1))s=s""2;else s=s""1};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|sort -k2|uniq -cf1|sort -n|egrep "([012])\1\1\1\1"
 2 deglory 222222
 2 sponged 000000
 16 bailors 022222
 19 lifeday 000002
 22 avonlea 200000
 25 abortus 222220
$ egrep ^[a-z]{7}$ $T|awk '{for (i=1;i<NF;i++) {if ($i>$(i+1))s=s""0;else if ($i<$(i+1))s=s""2;else s=s""1};{print s" "$0;s="";}} ' FS=""|awk '{print $2,$1}'|egrep "([012])\1\1\1\1\1"
deglory 222222
egilops 222222
sponged 000000
wronged 000000
and
[truncated?]

Counting chars in dict:
$ grep -o . $w|wc -l
296257
$ wc $w
 35916 35916 332173 /home/ddailey/public_html/words
$ expr 296257 + 35916
332173
Vowels:

$ grep -o "[aeiou]" $w|wc -l
114419
$ grep -io "[aeiou]" $w|wc -l
114444
$ grep -o "[AEIOU]" $w|wc -l
25
25 + 114419 = 114444

Consonants

$ grep -o "[bcdfghjklmnpqrstvwxyz]" $w|wc -l
180896
$ grep -oi "[bcdfghjklmnpqrstvwxyz]" $w|wc -l
180944
$ grep -o "[BCDFGHJKLMNPQRSTVWXYZ]" $w|wc -l
48
$ expr 48 + 180896
180944

Together:
$ grep -io "[aeiou]" $w|wc -l
114444
$ grep -oi "[bcdfghjklmnpqrstvwxyz]" $w|wc -l
180944

$ grep -o . $w|wc -l
296257
$ expr 114444 + 180944
295388
Nonalphabetic characters:
$ grep -oi "[^a-z]" $w|wc
 869 869 1738
$ grep -oi "[^a-z]" $w|sort|uniq -c
 746 -
 30 ;
 1 .
 62 '
 30 &
$ expr 746 + 30 + 1 + 62 + 30
869
$ expr 869 + 295388
296257
This shows a partition of the 296257 characters of $w = /home/ddailey/public_html/words into:
Vowels: 114444
Consonants: 180944
And other: 869

$ wc /home/ddailey/public_html/moby/mthes/SixOrMore
 66023 66023 595432 /home/ddailey/public_html/moby/mthes/SixOrMore

$ echo {A..Z} {a..z}|sed s/[aeiouAEIOU\]//g
BCDFGHJKLMNPQRSTVWXYZbcdfghjklmnpqrstvwxyz
$ paste <(head SixOrMore) <(head SixOrMore |sed 's/[aeiouAEIOU]/A/g;s/[BCDFGHJKLMNPQRSTVWXYZbcdfghjklmnpqrstvwxyz]/C/g;s/A/V/g')
a V
a- V-
A V
aa VV
aah VVC
aahs VVCC
aardvark VVCCCVCC
aardwolf VVCCCVCC
aas VVC
ab VC

$ cat SixOrMore|sed -n '/^....$/s/[aeiouAEIOU]/A/gp'|sed 's/[BCDFGHJKLMNPQRSTVWXYZbcdfghjklmnpqrstvwxyz]/C/g;s/A/V/g'|sort|uniq -c|sort -nr
 1227 CVCC
 662 CVCV
 468 CVVC
 410 CCVC
 150 VCVC
 68 VCCV
 59 VCCC
 49 CCVV
 38 VVCC
 32 CCCV
 18 VCVV
 10 VVCV
 9 CVVV
 3 V'VC
 2 CVC-
 2 CCV-
 1 VVVC
 1 'CVC

$ cat SixOrMore|sed -n '/^.....$/s/[aeiouAEIOU]/A/gp'|sed 's/[BCDFGHJKLMNPQRSTVWXYZbcdfghjklmnpqrstvwxyz]/C/g;s/A/V/g'|sort|uniq -c|sort -nr

 1340 CVCVC
 908 CVCCC
 721 CCVCC
 507 CVCCV
 490 CVVCC
 303 CCVCV
 297 CCVVC
 247 VCCVC
 133 VCVCC
 123 CVVCV
 118 VCVCV
 107 CVCVV
 78 CCCVC
 69 VCVVC
 45 VVCVC
 25 VCCVV
 24 CVVVC
 21 VCCCV
 20 VCCCC
 17 CCCCV
 12 VVCCC
 9 CCCVV
 7 VVCCV
 5 CV-CV
 4 CVC'C
 3 VVCVV
 3 CVVVV
 2 CV'VC
 2 CVCC-
 1 VVC'C
 1 VCVVV
 1 VCV'C
 1 VCC'C
 1 CV-VC
 1 CVïCV
 1 CVCV-
 1 CV'CV
 1 CV-CC
 1 C-CVC
 1 'CCVC

cat SixOrMore|sed -n '/^......$/s/[aeiouAEIOU]/A/gp'|sed 's/[BCDFGHJKLMNPQRSTVWXYZbcdfghjklmnpqrstvwxyz]/C/g;s/A/V/g'|sort|uniq -c|sort -nr|head -50

 2308 CVCCVC
 905 CVCVCC
 620 CCVCVC
 501 CCVCCC
 497 CVVCVC
 492 CVCVCV
 380 CVCVVC
 328 VCCVCC
 257 CCVVCC
 239 CVCCCV
 193 VCCVCV
 180 VCVCVC
 178 CVVCCC
 157 CVCCVV
 151 CVCCCC
 128 CCVCCV
 125 VCCVVC
 111 CCCVCC
 104 VCCCVC
 103 CVVCCV
 64 CCVVCV
 59 CCCVCV
 57 CCCCVC
 49 VVCCVC
 45 VCVCCC
 41 CVVCVV
 40 VCVVCC
 37 VCVCCV
 35 CCCVVC
 31 VVCVCC
 28 CCVCVV
 21 VCVVCV
 18 VCVCVV
 17 VVCVCV
 14 CVVVCC
 9 VCCCVV
 8 CCCCCV
 7 VVCVVC
 7 VVCCCC
 7 VCCCCV
 5 CVCVVV
 5 CCCCVV
 4 CCVVVC
 3 CVVVCV
 3 CVCC'C
 2 VVCCVV
 2 VVCCCV
 2 VCCCCC
 2 CVVVVC
 2 CV-VCC

Seven letters:
$ cat SixOrMore|sed -n '/^.......$/s/[aeiouAEIOU]/A/gp'|sed 's/[BCDFGHJKLMNPQRSTVWXYZbcdfghjklmnpqrstvwxyz]/C/g;s/A/V/g'|sort|uniq -c|sort -nr|head -50

 1824 CVCCVCC
 928 CCVCCVC
 821 CVCVCVC
 694 CVCCCVC
 623 CVCCVCV
 546 CVCCVVC
 394 CVVCVCC
 361 CVVCCVC
 360 CCVCVCC
 333 VCCVCVC
 263 CCVVCVC
 231 CVCVCCV
 195 CVCVCCC
 167 CCVCVCV
 166 CVCVVCC
 147 VCVCVCC
 137 CCVCVVC
 136 VCCCVCC
 125 VCVCVCV
 111 VCVCCVC
 111 VCCVCCC
 110 CCVCCCV
 89 CVCVVCV
 88 VCCVVCC
 87 CCCVCVC
 85 VCCCVCV
 85 CVVCVCV
 82 VCCVCCV
 82 CCVCCCC
 78 CVCVCVV
 72 CCVVCCC
 65 CVVCVVC
 62 VCVCVVC
 60 VCCCVVC
 47 VVCCVCC
 44 CCCVCCC
 40 CVCVVVC
 36 CCCCVCC
 35 CVVCCCC
 34 VCVVCVC
 30 VCCVVCV
 28 CCVCCVV
 26 VCCCCVC
 26 CCVVCCV
 25 VVCCCVC
 25 CCCVVCC
 24 CCCCCVC
 22 VVCVCVC
 22 VCCVCVV
 22 CCCCVVC

Eight letters
$ cat SixOrMore|sed -n '/^........$/s/[aeiouAEIOU]/A/gp'|sed 's/[BCDFGHJKLMNPQRSTVWXYZbcdfghjklmnpqrstvwxyz]/C/g;s/A/V/g'|sort|uniq -c|sort -nr|head -50

 927 CVCCVCVC
 835 CVCVCVCC
 742 CCVCCVCC
 623 CVCCCVCC
 462 CVCVCCVC
 422 CVCVCVCV
 370 CVCVCVVC
 349 CVVCCVCC
 332 VCCVCCVC
 328 CVCCVCCC
 268 VCCVCVCC
 261 CCVCCCVC
 239 CCVCVCVC
 227 CCVVCVCC
 192 CVCCVVCC
 192 CVCCVCCV
 191 CVCCCVCV
 182 CVCCCVVC
 141 VCCVCVCV
 135 VCCCVCVC
 132 CVCVVCVC
 123 VCVCVCVC
 121 VCVCCVCC
 120 CVCCCCVC
 116 CVVCVCVC
 115 CCVCCVVC
 111 CCVCCVCV
 105 VCCVCVVC
 92 CVVCCCVC
 90 CCVVCCVC
 85 CVVCCVCV
 84 CCCVCCVC
 77 VCCVVCVC
 75 CVVCCVVC
 74 VCVCCVCV
 67 CVVCVCCC
 65 CVCCVVCV
 61 VCVCCVVC
 60 CCVCVCCC
 57 CVCVCCCC
 56 CCVCVCCV
 52 CVCVVCCV
 52 CVCCVCVV
 47 CVCVVCCC
 43 CVVCVCCV
 42 CCCVCVCC
 41 VCVCCCVC
 38 CCVCVVCC
 38 CCCCVCVC
 37 CCVVCVCV

Spanish
$echo $s
es.txt
data$pwd
/home/SRUNET/david.dailey/data
Most frequent characters
$cat $s|sed 's/\ .*//;s/./&\n/g'|awk '!/^$/'|sort|uniq -c|sort -nr|head -50

 537718 a
 454007 e
 353327 r
 342698 o
 336226 i
 313406 s
 295433 n
 224557 t
 215427 l
 189358 c
 165198 d
 148208 m
 135614 u
 101579 p
 82573 b
 79228 g
 69799 h
 52981 v
 46424 f
 37876 k
 30150 y
 29973 á
 29960 z
 25592 í
 25280 j
 24380 é
 17352 ó
 14592 w
 14034 q
 10128 x
 4989 ñ
 4261 ú
 2045 ò
 1754 à
 1732 ô
 1588 â
 1441 ï
 1170 è
 885 ü
 721 ì
 701 ê
 591 ｿ
 466 ã
 438 ö
 401 ż
 396 ą
 358 ç
 317 î
 309 ä
 247 û

$grep ｿ $s
ｿpor 16
ｿest疽 16
ｿte 12
ｿno 12
ｿpuedo 8
ｿde 8
ｿeres 7
ｿes 6
ｿqui駭 6

A Google search for ‘ｿest疽’ reveals about 5000 hits, including
https://commons.wikimedia.org/wiki/TimedText:The_Million_Ryo_Pot_(1935).webm.ja.srt
Entitled “Japanese subtitles for clip: File:The Million Ryo Pot (1935).webm” , the page has 1219 entries, many of which appear to be Spanish with frequent transcription errors: e.g.
725
00:52:24,546 --> 00:52:27,276
Es la segunda casa desde la esquina,
delante de un pozo. No tiene p駻dida.
$cat $s|sed 's/\ .*//;s/./&\n/g'|awk '!/^$/'|sort|uniq -c|sort -nr|head -50|awk '{print $2}'|tr '\n' ' '
a e r o i s n t l c d m u p b g h v f k y á z í j é ó w q x ñ ú ò à ô â ï è ü ì ê ｿ ã ö ż ą ç î ä û
a$v=[aeoiuáíéóúòàôâïèüìêãöąîäû]
data$c=[rsntlcdmpbghvfkyzjwqxñżç]
Spanish 4:
$awk '{print $1}' $s|sed -n '/^.\{4\}$/s/[aeoiuáíéóúòàôâïèüìêãöąîäû]/V/gp'|sed 's/[rsntlcdmpbghvfkyzjwqxñżç]/C/g'|sort|uniq -c|sort -nr|head -24

 6082 CVCV
 3453 CVCC
 2066 CVVC
 1865 CCVC
 1520 VCVC
 1251 VCCV
 568 CCCV
 562 CVVV
 506 VCVV
 498 CCVV
 467 VVCV
 441 VCCC
 165 VVCC
 124 VVVC
 62 VVVV
 14 ｿCVC
 13 CVCž
 9 CVńV
 8 ĺźCV
 8 CVëC
 6 CVCแ
 5 CVýV
 5 CVCù
 5 CV

English 4
$cat $e|sed 's/\ .*//;s/./&\n/g'|awk '!/^$/'|sort|uniq -c|sort -nr|head -50|awk '{print $2}'|tr '\n' ' '
$cat $e|sed 's/\ .*//;s/./&\n/g'|awk '!/^$/'|sort|uniq -c|sort -nr|head -50|awk '{print $2}'|tr '\n' ' '
e a i r o n s t l u c h d m g p b k y f v w z j x q é ÿ í á ï ä ó è ö ñ î þ ã а ü о е и ç å à ý ê т

data$ev="e a i o u é ÿ í á ï ä ó è ö î ã а ü о е и å à ê"
 data$ec="r n s t l c h d m g p b k y f v w z j x q ñ þ ç т"
data$echo $ec|sed 's/\ //g'
rnstlchdmgpbkyfvwzjxqñþçт
data$echo $ev|sed 's/\ //g'
eaiouéÿíáïäóèöîãаüоеиåàê

$awk '{print $1}' $e|sed -n '/^.\{4\}$/s/[eaiouéÿíáïäóèöîãаüоеиåàê]/V/gp'|sed 's/[rnstlchdmgpbkyfvwzjxqñþçт]/C/g'|sort|uniq -c|sort -nr|head -2
 5235 CVCV
 5079 CVCC
 2704 CCVC
 2500 CVVC
 1651 VCVC
 1269 VCCV
 884 VCCC
 881 CCCV
 568 CCVV
 514 CVVV
 437 VVCC
 420 VVCV
 413 VCVV
 172 VVVC
 51 VVVV
 18 CôCV
 14 CVCô
 13 ηVCC
 12 CVšV
 12 CVCò
 11 CøCV
 10 CâCV
 9 CVCú
 8 žVCV

Note that for four letter words, in both Spanish and English, CVCV is the top-occuring pattern, while CVCC is second. Note also that when I used the top fifty characters in English ‘ô’ and ‘ú’ clearly vowels didn’t appear in the top fifty. The above script could clearly be refined, but it is interesting to note that the pattern CôCV is slightly more frequent than VCCC or CCCC in this particular vocabulary of the language. (some of the more frequent occurances: $grep "^.ô..\ " $e côte 17 (as in Côte d’Azur), môle 14, côté 13, dôme 10, môme 6, cômo 5, côme 5, rôti 4 (as in poulet rôti - wrapped in bacon, with purée and fennel (https://www.tripadvisor.co.uk/LocationPhotoDirectLink-g186338-d1388950-i94968576-Cote_Brasserie_Covent_Garden-London_England.html)), also in familiar appearance: lancôme 3,)

French and German (just for fun):
$wc $g $f
 317388 634776 4573651 de.txt
 305763 611526 3833939 fr.txt
 623151 1246302 8407590 total

$cat $f $g|sed 's/\ .*//;s/./&\n/g'|awk '!/^$/'|sort|uniq -c|sort -nr|head -60|awk '{print $2}'|tr '\n' ' '
e r n i a s t l o u h c g m d p b f k v é z w y ä ü j q x è ö ê ß ï í â î ç ô á ž û à ó ì č š å ã ë ο ñ ú œ ę þ ù æ ÿ õ
$echo $fgv
eiasouéyäüèöêïíâîôáûàóìåãëοúœęùæÿõ
$echo $fgc|sed 's/\ //g'
rnstlhcgmdpbfkvzwyjqxßçžčšñþ
$awk '{print $1}' $f|sed -n '/^.\{4\}$/s/[eiasouéyäüèöêïíâîôáûàóìåãëοúœęùæÿõ]/V/gp'|sed 's/[rnstlhcgmdpbfkvzwyjqxßçžčšñþ]/C/g'|sort|uniq -c|sort -nr|head -24

 4184 CVCV
 1720 CVCC
 1597 CVVC
 1171 CVVV
 945 CCVC
 903 VCVC
 864 VVCV
 838 VCCV
 680 VCVV
 553 CCVV
 381 VVVC
 304 VVVV
 283 CCCV
 272 VVCC
 165 VCCC
 5 CVCò
 5 CòCV
 5 CˆCV
 4 CVďC
 3 VCCò
 3 CVC嶪
 3 CVCŕ
 3 CVCø
 3 CøCV

German
$awk '{print $1}' $g|sed -n '/^.\{4\}$/s/[eiasouéyäüèöêïíâîôáûàóìåãëοúœęùæÿõ]/V/gp'|sed 's/[rnstlhcgmdpbfkvzwyjqxßçžčšñþ]/C/g'|sort|uniq -c|sort -nr|head -24

 2376 CVCV
 1793 CVCC
 1151 CVVC
 729 CCVC
 648 CVVV
 635 VCVC
 498 VCCV
 474 VVCV
 311 VCVV
 291 VVCC
 268 CCVV
 251 VVVC
 176 VCCC
 169 VVVV
 144 CCCV
 4 κVCC
 3 ηVCC
 2 μVCC
 2 ηVVC
 2 ηVCV
 2 εVCV
 2 αVCV
 2 αCVV
 1 νVVC

Conclusion: It is interesting to note that for these four languages, the most prevalent forms of Consonant-Vowel rhythms for four letter words are, first: CVCV and second: CVCC).
English 5
$awk '{print $1}' $e|sed -n '/^.\{5\}$/s/[eaiouéÿíáïäóèöîãаüоеиåàê]/V/gp'|sed 's/[rnstlchdmgpbkyfvwzjxqñþçт]/C/g'|sort|uniq -c|sort -nr|head -32

 10562 CVCVC
 8473 CVCCV
 4573 CVCCC
 3367 CCVCC
 2736 CCVCV
 2623 CVVCV
 2550 VCCVC
 2533 CVCVV
 2403 CVVCC
 1888 VCVCV
 1419 CCVVC
 1319 CCCVC
 1075 VCVCC
 583 CVVVC
 568 VCVVC
 534 VVCVC
 512 CCCCV
 507 VCCVV
 490 VCCCV
 337 VCCCC
 243 VVCCC
 216 VVCCV
 214 CCCVV
 170 CCVVV
 126 VVVCC
 109 CVVVV
 105 VVCVV
 74 VVVCV
 67 VCVVV
 37 VVVVC
 25 VVVVV
 17 CVυCC

Spanish 5
$awk '{print $1}' $s|sed -n '/^.\{5\}$/s/[aeoiuáíéóúòàôâïèüìêãöąîäû]/V/gp'|sed 's/[rsntlcdmpbghvfkyzjwqxñżç]/C/g'|sort|uniq -c|sort -nr|head -32

 10524 CVCVC
 8301 CVCCV
 3180 CVCVV
 2962 CVVCV
 2911 VCVCV
 2743 CCVCV
 2540 CVCCC
 2080 VCCVC
 1702 CCVCC
 1247 CVVCC
 904 CCVVC
 657 CCCVC
 578 CVVVC
 577 VCCVV
 555 VCVVC
 451 VCVCC
 437 VVCVC
 381 VCCCV
 339 VVCCV
 272 CCCCV
 248 CVVVV
 149 VVVCV
 136 VVCVV
 133 CCVVV
 132 CCCVV
 117 VCCCC
 106 VCVVV
 77 VVCCC
 48 VVVVC
 37 VVVVV
 29 VVVCC
 13 ｿCVCV

Note that for five letter words, in both Spanish and English, CVCVC is the top-occuring pattern, while CVCCV is second.

Spanish 6
$awk '{print $1}' $s|sed -n '/^.\{6\}$/s/[aeoiuáíéóúòàôâïèüìêãöąîäû]/V/gp'|sed 's/[rsntlcdmpbghvfkyzjwqxñżç]/C/g'|sort|uniq -c|sort -nr|head -32

 13257 CVCCVC
 13213 CVCVCV
 3243 CVCVVC
 3210 CCVCVC
 3127 CVVCVC
 2832 CVCCVV
 2777 VCCVCV
 2769 CVCVCC
 2394 VCVCVC
 2038 CCVCCV
 1994 CVCCCV
 1699 CVVCCV
 1671 VCVCCV
 910 CCVCCC
 780 CCVVCV
 767 CCVCVV
 750 VCVCVV
 730 VCCVCC
 676 CVVCVV
 647 VCCCVC
 605 CVCCCC
 596 VCCVVC
 579 VCVVCV
 509 CCVVCC
 468 CVCVVV
 432 CCCVCV
 414 CVVVCV
 396 VVCVCV
 375 CCCVCC
 343 CVVCCC
 338 CCCCVC
 270 VVCCVC

English 6
$awk '{print $1}' $e|sed -n '/^.\{6\}$/s/[eaiouéÿíáïäóèöîãаüоеиåàê]/V/gp'|sed 's/[rnstlchdmgpbkyfvwzjxqñþçт]/C/g'|sort|uniq -c|sort -nr|head -32

 15464 CVCCVC
 8722 CVCVCV
 4935 CVCVCC
 3706 CCVCVC
 3489 CVVCVC
 2623 CVCCVV
 2578 CVCCCV
 2559 CVCVVC
 2333 CCVCCV
 1980 CCVCCC
 1841 VCCVCC
 1696 VCCVCV
 1602 CVCCCC
 1560 CVVCCV
 1454 VCVCVC
 1107 CCVVCC
 981 CCCVCC
 968 VCCCVC
 943 CVVCCC
 915 VCVCCV
 843 CCCCVC
 777 CVVCVV
 737 CCVVCV
 698 VCCVVC
 653 CCCVCV
 635 CCVCVV
 420 VVCCVC
 396 CCCVVC
 366 VCVCVV
 319 VCVCCC
 317 VCVVCV
 280 VVCVCC

Note that for six letter words, in both Spanish and English, CVCCVC is the top-occuring pattern, while CVCVCV is second. However, note some disagreement in lower ranked patterns:
English (4935 CVCVCC)3 > (2559 CVCVVC)8
Spanish (2769 CVCVCC)8 < (3243 CVCVVC)3

English 7
$awk '{print $1}' $e|sed -n '/^.\{7\}$/s/[eaiouéÿíáïäóèöîãаüоеиåàê]/V/gp'|sed 's/[rnstlchdmgpbkyfvwzjxqñþçт]/C/g'|sort|uniq -c|sort -nr|head -32

 8710 CVCCVCC
 6206 CVCCVCV
 6140 CVCVCVC
 5013 CVCCCVC
 4789 CCVCCVC
 4524 CVCVCCV
 3145 CVCCVVC
 2297 CVVCCVC
 1789 CVVCVCC
 1742 CCVCVCV
 1707 CCVCVCC
 1694 VCCVCVC
 1463 CVCVCVV
 1288 CCVVCVC
 1242 CVCVVCV
 1152 CVCVCCC
 1091 VCVCVCV
 1016 CVVCVCV
 869 VCVCCVC
 839 VCCVCCV
 824 CVCVVCC
 753 CCVCVVC
 737 VCCCVCC
 716 CCVCCCV
 676 CVVCVVC
 669 CCCVCVC
 589 CVCCCCC
 586 CCVCCVV
 578 CCVCCCC
 576 VCVCVCC
 557 CVCCCVV
 556 CCCCVCC

Spanish 7
$awk '{print $1}' $s|sed -n '/^.\{7\}$/s/[aeoiuáíéóúòàôâïèüìêãöąîäû]/V/gp'|sed 's/[rsntlcdmpbghvfkyzjwqxñżç]/C/g'|sort|uniq -c|sort -nr|head -32

 10517 CVCVCVC
 9802 CVCCVCV
 7033 CVCVCCV
 4554 CVCCVCC
 3273 CVCCCVC
 3047 CCVCCVC
 2997 VCVCVCV
 2932 CVCCVVC
 2729 CCVCVCV
 2579 VCCVCVC
 2540 CVCVCVV
 2328 CVCVVCV
 1860 CVVCVCV
 1805 CVVCCVC
 1755 VCCVCCV
 1225 VCVCCVC
 845 CCVVCVC
 763 VCCVCVV
 762 CCVCVCC
 741 CCVCVVC
 735 CVVCVCC
 713 VCVCVVC
 642 VCCCVCV
 608 VCCVVCV
 564 CVVCVVC
 512 CVCVCCC
 502 CCVCCVV
 469 CCVCCCV
 447 VCVVCVC
 442 CVCCCVV
 439 CVCVVVC
 380 CCCVCVC

Let’s also look at French and German:
French 7
$awk '{print $1}' $f|sed -n '/^.\{7\}$/s/[eiasouéyäüèöêïíâîôáûàóìåãëοúœęùæÿõ]/V/gp'|sed 's/[rnstlhcgmdpbfkvzwyjqxßçžčšñþ]/C/g'|sort|uniq -c|sort -nr|head -24

 3774 CVCCVCV
 2838 CVCVCCV
 2692 CVCVCVV
 2300 CVCVCVC
 1876 CVCCVCC
 1874 CVCVVCV
 1486 CVCCVVC
 1276 CVVCVCV
 1136 CVCCVVV
 1080 CVCCCVC
 1017 VCVCVCV
 1013 CCVCVCV
 931 VCCVCVV
 915 CVVCCVC
 898 CCVCCVC
 893 VCCVCCV
 804 CVVCCVV
 754 CVCVVVV
 680 VCVCCVC
 667 CCVCCVV
 663 CVCCCVV
 642 VCCVCVC
 630 CVVCVVC
 611 CVVCVCC

German 7
$awk '{print $1}' $g|sed -n '/^.\{7\}$/s/[eiasouéyäüèöêïíâîôáûàóìåãëοúœęùæÿõ]/V/gp'|sed 's/[rnstlhcgmdpbfkvzwyjqxßçžčšñþ]/C/g'|sort|uniq -c|sort -nr|head -24

 2214 CVCCVCV
 2166 CVCCVCC
 1577 CVCVCVC
 1304 CVCCCVC
 1234 CVCVCCV
 967 CCVCCVC
 911 CVCCVVC
 846 CVVCCVC
 762 CVCVCVV
 686 VCCVCVC
 665 VCVCCVC
 650 CVVCVCV
 642 CVCVVCV
 620 CVVCVCC
 565 CVCCVVV
 564 VCCVCCV
 461 CVCVCCC
 453 CCVVCVC
 393 VCVCVCV
 393 CVCVVCC
 390 VCCCVCC
 376 CVVVCVC
 367 CCVCVCV
 354 CVCCCVV

Note that English (8710 CVCCVCC)1 > (6140 CVCVCVC)3
While Spanish (4554 CVCCVCC)4 < (10517 CVCVCVC)1
In French (1876 CVCCVCC) 5 < (2300 CVCVCVC)4
And in German (2166 CVCCVCC)2 > (1577 CVCVCVC) 3

Examples:
	CVCrhythm
	English
	Spanish

	CVCCVCC
	forward/selling
	raymond/bistecs

	CVCCVCV
	destiny/lottery
	soldado/cerrado

	CVCVCVC
	related/titanic
	sigamos/pedimos

	CVCCCVC
	matches/seltzer
	mostrar/manchas

	CCVCCVC
	stalled/bracket
	francos/prestar

	CVCVCCV
	bizarre/syringe
	podréis/cambios

	CVCCVVC
	passion/penguin
	viernes/sientas

	CVVCCVC
	neither/measles
	cierren/cuernos

	VCVCVCV
	ability/episode
	apetece/editado

	CVCVCVV
	someday/referee
	refería/delicia

	CVCVVCV
	genuine/release
	líquido/valiosa

	CVVCVCV
	sausage/seizure
	realeza/quemado

	CVCCVVV
	kumbaya/hawkeye
	desmayó/turquía

	CCVCVCV
	closely/precise
	llamaba/trasera

	VCCVCVV
	amnesia/antique
	odiaría/acuario

Seven letter sequences: comparisons of consonant-vowel rhythms across English, Spanish, French and German:

Relative frequency for most popular CVC sequences relative to the total number sampled.
The above table involved first choosing the eight most frequently occurring sequences in English, and then “bootstrapping” outward so that each language’s highest frequency entries were included.
	
	CVCCVCC
	CVCCVCV
	CVCVCVC
	CVCCCVC
	CCVCCVC
	CVCVCCV
	CVCCVVC
	CVVCCVC
	VCVCVCV
	CVCVCVV
	CVCVVCV
	CVVCVCV
	CVCCVVV
	CCVCVCV
	VCCVCVV

	English
	8710
	6206
	6140
	5013
	4789
	4524
	3145
	2297
	1454
	1463
	1241
	1016
	222
	1742
	366

	Spanish
	4554
	9802
	10517
	3273
	3047
	7033
	2932
	1805
	2997
	2540
	2328
	1860
	310
	2729
	734

	French
	1876
	3774
	2309
	1080
	1486
	2838
	1486
	915
	1017
	2692
	1874
	1276
	1136
	1013
	931

	German
	2166
	2214
	1577
	1304
	967
	1234
	911
	846
	393
	762
	642
	650
	565
	367
	704

Specifically, if as we see above,In order to “get to” the eight highest sequences for English (CVVCCVC at 2297 in English but only 1805 in Spanish) the following Spanish sequences were higher in frequency than the Spanish value of this pattern: 1805. Namely, the sequences (VCVCVCV:2997, VCVCVCV:2540, CVCVCVV:2328, CVCVVCV: 1860) all had to be considered before inclusion of CVVCCVC could be entertained. This method was extended until all four languages had represented in the table, their top eight values. This required the addition of seven more columns as can be seen.

Spanish 9
$awk '{print $1}' $s|sed -n '/^.\{9\}$/s/[aeoiuáíéóúòàôâïèüìêãöąîäû]/V/gp'|sed 's/[rsntlcdmpbghvfkyzjwqxñżç]/C/g'|sort|uniq -c|sort -nr|head -32

 6006 CVCVCVCVC
 5452 CVCCVCVCV
 4164 CVCVCCVCV
 3651 CVCVCVCCV
 3380 CVCCVCCVC
 2702 VCCVCVCVC
 1961 VCCVCCVCV
 1868 VCCVCVCCV
 1808 CVCCVCVVC
 1420 CCVCVCVCV
 1355 VCVCCVCVC
 1297 CVCCVVCVC
 1218 CVCCCVCVC
 1136 VCVCVCVCV
 1039 CVCVCVCVV
 1002 CVCVCCVVC
 989 CVCVCVVCV
 946 CVCCVVCCV
 939 CCVCCVCVC
 933 VCVCCVCCV
 741 CCVCVCCVC
 740 VCCCVCVCV
 734 CVCCCVCCV
 705 CVCCVCVCC
 644 CVVCVCVCV
 627 VCVCVCCVC
 612 CVCVVCVCV
 605 CCVCCVCCV
 602 CVVCCVCVC
 551 CVCVVCCVC
 543 CVCVCCVCC
 533 CCVCVCVVC

English 9
$awk '{print $1}' $e|sed -n '/^.\{9\}$/s/[eaiouéÿíáïäóèöîãаüоеиåàê]/V/gp'|sed 's/[rnstlchdmgpbkyfvwzjxqñþçт]/C/g'|sort|uniq -c|sort -nr|head -32

 3240 CVCCVCCVC
 2342 CVCCVCVCV
 2295 CVCCVCVCC
 1787 CVCVCVCVC
 1571 CVCVCCVCC
 1454 CVCVCCVCV
 1428 CVCVCVCCV
 1218 CVCCCVCVC
 1156 CVCCVCVVC
 1047 CCVCCCVCC
 921 CCVCCVCVC
 884 CVCCCCVCC
 859 VCCVCCVCC
 738 CVCCCVCCC
 733 CCVCVCVCV
 715 CCVCVCVCC
 712 CCVCVCCVC
 660 CVCVCCVVC
 616 CVCCVVCVC
 612 VCCVCVCVC
 600 CVCVCCCVC
 558 CVCCCVCCV
 525 CVCVCVCCC
 517 CCVVCCVCC
 512 CVVCCCVCC
 501 VCCVCCVCV
 494 CVVCCVCVC
 482 CVCCVCCCV
 482 CCVCCVCCV
 473 CVCCCVVCC
 460 CCVCCVCCC
 424 CVCCVCCCC
English 9 (from different dictionary)
$ cat SixOrMore|sed -n '/^.\{9\}$/s/[aeiouAEIOU]/A/gp'|sed 's/[BCDFGHJKLMNPQRSTVWXYZbcdfghjklmnpqrstvwxyz]/C/g;s/A/V/g'|sort|uniq -c|sort -nr|head -32

 640 CVCCVCVCC
 403 CVCCVCCVC
 381 CVCVCCVCC
 322 CVCCVCVCV
 314 CVCVCVCVC
 314 CVCCVCVVC
 267 VCCVCCVCC
 200 CCVCCCVCC
 184 CCVCVCVCC
 170 CVCVCCVCV
 164 CCVCCVCVC
 156 VCCVCVCVC
 151 CVCCCVCVC
 130 CVCCCCVCC
 129 CVCVCVCCC
 124 CVCVCCVVC
 122 VCCVCCVCV
 119 CCVVCCVCC
 110 CVCCVVCVC
 106 CVVCCCVCC
 103 CVCVVCVCC
 98 CVCVCVCCV
 98 CCVCVCCVC
 97 CCVCVCVVC
 90 CVVCVCVCC
 88 VCCVCCVVC
 87 CCVCVCVCV
 85 VCVCVCVCC
 82 VCCCVCVCC
 82 CVCVCVVCC
 80 VCCCVCCVC
 78 CVCCCVCCC

Note that English (3240 CVCCVCCVC)1 > (1787 CVCVCVCVC)4 (generally consistent across both methods)
While Spanish (3380 CVCCVCCVC)5 < (6006 CVCVCVCVC)1

References
[1] A Chronology of Major Events in the History of Lexicography, from The Oxford Handbook of Lexicography, Edited by Philip Durkin, 2015 seen (January, 2018 at http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199691630.001.0001/oxfordhb-9780199691630-miscMatter-8)
[2] Carter Revard, in Wikipedia. Accessed January 2018 at https://en.wikipedia.org/wiki/Carter_Revard .
[3] The Brown Corpus. https://en.wikipedia.org/wiki/Brown_Corpus
[4] The History and Philosophy of Project Gutenberg, Michael Hart, 1992 https://www.gutenberg.org/wiki/Gutenberg:The_History_and_Philosophy_of_Project_Gutenberg_by_Michael_Hart
[5] The FRELI word list, 2009. Paul M. Hoffman. From http://www.nkuitse.com/freli/
Creative Commons License (2.0) at freli-20090227/COPYING.
[6] Anagrams -- words that share letters, permuted. David Dailey, 2000. Available at http://srufaculty.sru.edu/david.dailey/words/anagrams.htm.
[7] Aegilops, Wikipedia entry, retrived, Feb. 2017. https://en.wikipedia.org/wiki/Aegilops
[8] TwoOrMore. Words in two or more public access dictionaries, as described at https://ello.co/ddailey/post/v7ewsn39omeyt3hbac0_xa (Dailey, 2017) in this paper (Section I) and as seen at http://cs.sru.edu/~ddailey/cgi/Wotsa?2
[9] Roget’s Thesaurus
[10] Samuel Johnson’s dictionary.
[11] Noah Webster and the American Dictionary. David Micklethwait. 2000.
[12] Seven dirty words. From the 1972 monologue by George Carlin. Wikipedia, retrieved Feb. 2017 at https://en.wikipedia.org/wiki/Seven_dirty_words
[13] Webster’s Collegiate Dictionary, 1919, By Noah Webster, retrieved at https://archive.org/details/websterscolle00webs
[14] Vocabulary Size, Text Coverage and Word Lists, Paul Nation and Robert Waring, In Schmitt, N. and M. McCarthy (Eds.): Vocabulary: Description, Acquisition and Pedagogy (pp. 6-19). Cambridge: Cambridge University Press. 1997, retrieved at http://www.lextutor.ca/research/nation_waring_97.html
[15] The Moby Project by Grady Ward. As described by Wikipedia, at https://en.wikipedia.org/wiki/Moby_Project .
[16] The Project Gutenberg Etext of Moby Word II by Grady Ward. At http://www.gutenberg.org/files/3201/3201.txt.
[17] Words_(Unix), From Wikipedia at https://en.wikipedia.org/wiki/Words_(Unix)

[18] Development of a Spelling List, M.D. McIlroy. 1982. AT&T Bell Laboratories.
accessed 2017 at http://assets.openstudy.com/updates/attachments/4e63a12a0b8b1f45b4ac8b28-orr.andrew-1315343445132-mcilroy_spell_1982.pdf
[19] SCOWL and friends. From http://wordlist.aspell.net/.
 [20] Corpus of Contemporary American English. http://corpus.byu.edu/coca/.
[21] British National Corpus: What is the BNC? http://www.natcorp.ox.ac.uk/corpus/index.xml
[22] List of XML and HTML character entity references, retrieved Feb 2019 from Wikipedia. https://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references
[23] Observe, for example, the command and output:
$ comm <(echo {a..f}|tr ' ' '\n') <(echo {d..h}|tr ' ' '\n')|sed 's/\s//g'|tr '\n' ' ';echo
a b c d e f g h
which forms the union of the set {a..f} with the set {d..h}, namely {a..h}
[24] https://en.wikipedia.org/wiki/Pneumonoultramicroscopicsilicovolcanoconiosis
[25] E-mail not intended to be sent. (Digital archæology). David Dailey on Ello. 2016. https://ello.co/ddailey/post/6lcx4o-ve_a5c-cj9mr8fa
[26] Omni-Opticon: a way of visualizing trend-proximities George Shirk IV
David Dailey, 2011, SVG Open 2011, Microsoft NERD, Cambridge MA.

English	CVCCVCC	CVCCVCV	CVCVCVC	CVCCCVC	CCVCCVC	CVCVCCV	CVCCVVC	CVVCCVC	VCVCVCV	CVCVCVV	CVCVVCV	CVVCVCV	CVCCVVV	CCVCVCV	VCCVCVV	0.18022678364509204	0.12841416983943077	0.12704850190365816	0.10372868730342659	9.9093693097169477E-2	9.3610329415659804E-2	6.5076146333388513E-2	4.7529382552557474E-2	3.0086078463830514E-2	3.0272305909617651E-2	2.5678695580201995E-2	2.1023009435523959E-2	4.5936103294156594E-3	3.6045356729018416E-2	7.5732494620096152E-3	Spanish	CVCCVCC	CVCCVCV	CVCVCVC	CVCCCVC	CCVCCVC	CVCVCCV	CVCCVVC	CVVCCVC	VCVCVCV	CVCVCVV	CVCVVCV	CVVCVCV	CVCCVVV	CCVCVCV	VCCVCVV	8.0657444962009384E-2	0.1736065602805475	0.18627016878907571	5.7969217690086984E-2	5.3966454720957832E-2	0.12456385823843018	5.1929650555250485E-2	3.1968969731318964E-2	5.3080887692389396E-2	4.498680505127433E-2	4.1232000850144411E-2	3.2943093462744238E-2	5.4905155771240305E-3	4.8334248419262857E-2	1.3000123979384003E-2	French	CVCCVCC	CVCCVCV	CVCVCVC	CVCCCVC	CCVCCVC	CVCVCCV	CVCCVVC	CVVCCVC	VCVCVCV	CVCVCVV	CVCVVCV	CVVCVCV	CVCCVVV	CCVCVCV	VCCVCVV	7.2987588997393368E-2	0.14683110920904172	8.9833871532505938E-2	4.201844142707082E-2	5.7814262926506738E-2	0.11041512663891374	5.7814262926506738E-2	3.5598957320157179E-2	3.9567365677158343E-2	0.10473485585340243	7.2909777068824663E-2	4.9644010426798432E-2	4.419717542699296E-2	3.9411741820021044E-2	3.6221452748706376E-2	German	CVCCVCC	CVCCVCV	CVCVCVC	CVCCCVC	CCVCCVC	CVCVCCV	CVCCVVC	CVVCCVC	VCVCVCV	CVCVCVV	CVCVVCV	CVVCVCV	CVCCVVV	CCVCVCV	VCCVCVV	0.14155012416677559	0.14468696902365685	0.10305842373545948	8.5217618611946155E-2	6.3194353679257617E-2	8.0643053195660744E-2	5.9534701346229339E-2	5.5286890602535624E-2	2.5682917265716951E-2	4.9797412102993162E-2	4.1955299960789415E-2	4.2478107436936398E-2	3.6923278002875481E-2	2.3983792968239451E-2	4.6007057900927982E-2	