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ABSTRACT

The problems of comparing two discrete structures have engaged mathematicians and computer scientists for several decades now. This paper presents a novel but unified approach to studying the similarity of not only strings and graphs but other mathematical structures such as algebraic structures, semi-groups, magmas, and trees. Research in this area has accelerated recently with the desire to determine the similarity of web pages for searching purposes. 

This paper measures the distance between two structures by measuring the overlap between the substructures of the two structures.
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1.  Introduction

The problems of comparing two discrete structures have engaged mathematicians and computer scientists for several decades now. Ulam’s graph conjecture [1] asserts that two graphs on n nodes sharing the same collection of subgraphs on n-1 nodes are isomorphic. Fueled by increased interest in applied problems associated with web site and web page similarity, interest in the problem has accelerated considerably in the past fifteen years, with at least twenty papers having been published on graph similarity [2] and several more during that time on the topic of string similarity [3].

This paper presents a novel but unified approach to studying the similarity of not only strings and graphs but other mathematical structures such as algebraic structures, semi-groups, magmas, and trees.

This paper presents preliminary definitions, elementary results, and include some remarks on computational complexity and directions for future investigations.

2.  Background
The basic concept is this: for most mathematical structures (e.g., sets, groups, strings, graphs, etc.) the concept of a sub-structure is well-known and has been formally defined (as in subsets, subgroups, substrings, and subgraphs, respectively, by way of example). Ignoring, for the moment, the question of computational complexity, consider the set of all sub-structures of a given structure. For two structures of the same type (in universal algebra one might use the term “category” though in many treatments, only algebras are considered, ruling out strings and graphs from consideration), one might then consider the degree to which those two structures share the same substructures. Specifically, in this paper the measure of distance between two structures is defined as a specific measure of the overlap between the substructures of those two structures.  

A mathematical structure, T, consists of a set S and a set of axioms defining relations, operations or other well-defined properties on the elements of S. In finite model theory [4], these concepts are more rigorously defined, such that the discussion of graphs, groups, sets and strings might all be motivated under a common notational framework.

2.1 Examples
1. Let T=(S, A) together with an operation (expressed by concatenation), where A consists of the set of axioms 

i) (x, y (S,   xy ( S

ii) (x, y, z (S,   x(yz) = (xy)z 

In this case T is a semi-group. If only axiom i) is required then T is defined as a magma (or in the older terminology due to Bruck, 1958, a quasi-group).

2. Let T=(S, A) together with a relation ~ where A consists of the set of axioms

i) (x, y (S,   x ~ y ( y ~ x

ii) (x (S,   ((x ~ x)

In this case T is a graph.

3. Let T=(S,A) together with an associative operation (expressed by concatenation).  

Then let Sn be defined recursively by

S1 = S and 

Sn = S x Sn-1
and

S* be defined as the infinite union of ordered tuples:  S1( S2((Sn (

In this case, s(S* is defined as a string over the alphabet S. The concatenation axioms (A) are given by

i) ((↔

ii)(((

iii) ((((((

In each of these examples and, indeed, in structures in the general case, we will define a substructure of T= (S,A), as a structure V=(U,A) for which U (S and for which all axioms governing operations, relations and other properties are preserved:

For example, if V = (U, A) is a substructure of T=(S,A) , and  A includes 

(x (S,   ((x ~ x), then x may not be related to itself in V. Likewise, two elements related in T, then if both are in U (S they must also be related in V. 

The above definition departs a bit from how subgraphs are often defined in graph theory, preferring instead what Harary [1] calls an induced subgraph. That is, consider only the elements of the set and the constraints placed on them by axioms, rather than considering pairs of nodes (or lines) to have an independent status of their own. In order to make our concept of substructure generalize conveniently, it seems natural that if nodes u and v are connected in G then they must also be connected in each subgraph of G. 

In the case of strings, the axioms in this paper  imply that if a=abc, then ab and bc are substrings of a while ac, ba, cb and ca are not. We wish for a definition of both strings and substructures that are powerful enough to motivate such a situation naturally without having to define it overtly, though [DEL I am not at present satisfied with the definitions we have provided for this. ]
The concept of substructure as an axiom preserving subset of the elements associated with a structure is certainly well known within algebra and graph theory, that even if we do require the separate treatment of strings (by defining the concept of substring overtly), we rely on the reader’s sensibilities in such matters.

A type of structures is defined as the collection of structures satisfying the same axioms. Accordingly graphs, strings, groups, magmas, fields and semi-groups would all be types of structures.

3.  Distances between Structures
This paper introduces a technique for determining the distance between structures. The metric introduced here is called the exhaustive substructure vector space (ESVA) 
It is traditional in both lexicography and graph theory to establish measures of similarity or distance between strings, on the one hand, or graphs on the other. Generally, there is a requirement that for two structures of the same type (satisfying the same axioms), U and V, the ESVA’s distance metric, d, which evaluates their distance induces a metric space upon the collection of structures in the type.

In particular:

For a type of structure Q, if there is a function d (called distance) satisfying:

i)  (T,U (Q , d(T,U)(R0,+ (the nonnegative real numbers) 

ii)  (T, U(Q , d(T,U) = 0 ↔ T=U

iii)  (T, U(Q , d(T,U) = d(U,T)

iv)  (T, U, V(Q , d(T,V) ≤ d(U,T)+d(U,V)

Then (Q, d) is called a metric space.

There have been many approaches to both string similarity and graph similarity that define distances satisfying the properties of a metric space. Some involve determining the largest shared substructure (wherein the degree of departure from either object represents the distance). Others (such as the Levenshtein distance [3]) involve attempts to calculate the minimum number of transformations (among a set of primitive transformations) needed to convert one structure into another. Such as been typically applied to the problem of string similarity but has also been used for graph similarity [5]. Still others involve calculating the size of the smallest superstructure encompassing both or using Bayesian techniques or automata theory. The reviews present in [6] for graphs and [7] for strings present a broad array of techniques for the two problems considered separately.  

It is beyond the scope of this paper to critique each of the numerous approaches. However, methods which base similarity on the minimum number of transformations needed to convert one structure into another, while among the most frequently used and cited of the techniques are fraught with relativity. The ESVA approach selects and counts  transformations from a set of chosen “primitive transformations” like insert, remove, permute, rotate, and replace. The set of primitives chosen is rather arbitrary and will ultimately affect the nature of the distance observed. It is also more computationally straightforward when the structures we are talking about are relatively simply like sets or strings. How one applies such methodology to more complex structures like Abelian rings does not appear to be self-evident.

Second, approaches which look only at the largest shared substructure intrinsically obscure other possibly relevant aspects of structural similarity. For example,  consider the two graphs of Figure 1.

The largest common subgraph is the graph consisting of K5 (in the center) and the five nodes immediately connected to it, though the fact that the two graphs share the same block-cutpoint diagram as well as five copies of K4,  and hence, considerable similarity, is ignored by the largest subgraph approach. 

Figure 1.

Two graphs sharing K5 + 5 x K2
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Third, and most important, if we are interested in a metric that generalizes easily from one type of structure to another, though certain approaches to similarity themselves bear “similarity” between work in graph theory and lexicography, no obvious guide exists to generalize to novel types of computational structures.

The distance metric which this paper calls the exhaustive substructure vector space (ESVA) approach works as follows: for each of two (or more) structures T and U within a common type, Q

1. enumerate all substructures within T and within U
Let T* and U* refer to the sets of all substructures of T and U, respectively

2. form the union of those two sets of substructures Z= T* (U*

3. form a |Z| -dimensional vector space with each of its axes determined by the corresponding substructure z ( Z.

4. determine the locus of T (or of U) in that |Z| dimensional space by letting its position on the z – axis (for each of the |Z| axes) be given by the number of occurrences, z(T) of the structure z as a substructure of T (or, for U, z(U)) .

5. Since T and U are now simply points in a shared space, we may calculate the distance between T and U as the Minkowski distance 
between these two as 
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for some appropriate metric parameter p. When p=2 we have the classic Euclidean distance in the |Z| dimensional space. For sake of simplifying the computation and for ease of readability, we will typically take p=1, which gives the well-known city-block or Manhattan metric.

Some examples and properties concerning this distance metric are now presented.

First, that this distance does indeed define a metric space over a type of structures is apparent from the fact that a well-known class of metrics within vector spaces have been used. If T and U are the same structure their sets of substructures will be equivalent and z(T) – z(U) =0 for all z in Z. It is also clear that if d(T,U) = 0, then necessarily T=U since two  of the axes of the metric space are the structures T and U themselves. If the value of both T and U on the “T-axis” is identical (as it must be for d to be zero) then U (. Likewise both T and U must have the same value, 1.0, on the U-axis then T (U, as well.

The properties of symmetry and the triangle inequality follow simply from the location of each structure in the |Z| dimensional space as it is normed by the Minkowski metric.

3.1. Example of Two Strings

Let the alphabet S = {a,b,c}

Let  = abaac and  = cbaac

Then,  = {a,b,c,ab, ba, aa, ac, aba, baa, aac, abaa, baac, abaac} 

(note that including the empty string would not affect distance since its measure in all strings would be 1.0).

and  
= {a,b,c,cb,ba,aa,ac,cba,baa,aac,cbaa,baac,cbaac} , 

so Z= { a, b, c, ab, cb, ba, aa, ac, cba, aba, baa, aac, cbaa, abaa, baac, cbaac, abaac } (we have underlined elements unique to   and boldfaced those unique to
The ESVA measure may partition Z into three subsets of axes: 

1. those labeled as I that occur equally often as substrings in bothand 

2. those labeled as D for which the and are differently represented on those axes despite elements of D being substrings of both. In our example “a” appears thrice as a substring of , but only twice as a substring of Using the notation introduced earlier a() = 3 and a()=2.)

3. those labeled as O containing strings that appear in only one of the two strings.

I = {b, c, ba, aa, ac, baa, aac, baac} , 

D={a},

O= {ab, cb, cba ,aba, cbaa, abaa, cbaac, abaac}

|I| = 8 , |D| = 1, and |O| = 8

with |I| +|D| +|O| = |Z| = 18 . 

In this case, note that none of the substrings in O appears more than once in either string meaning that the contribution of this component to the overall distance will be precisely |O| . The contribution of I will be 0 (since these substrings appear equally often in both strings), while the contribution of D, in this case will be 1.

Therefore d() = contribution(I)+ contribution(D)+ contribution(O) = 9

3.2. Another Example of Two Strings

In the above example note that the two strings alpha and beta are, in fact, fairly similar (allowing a single substitution of one character for another). One might ask what would be the distance of two entirely distinct strings of the same length.

Let the alphabet S = {a,b,c,d,e,f,g,h,i,j}

Let  = abcde and  = fghij

In this case |*| = |*| = 15 and |Z| = 30 .  For each of the 30 dimensions,  and differ by exactly one so that d(,) = contribution(O) = 30.

3.3 Example of Two Strings with Few Substrings

In the above example, both alpha and beta contain no individual substring more than once. Consider an example at the opposite extreme.

Let the alphabet S = {a,b }

Let  = aaaaa and  = bbbbb

In this case |*| = |*| = 5 and |Z| = 10 .  Partitioning Z, once again, into the shared and unshared substrings Z=I (D ( O, we see, as in example 2, that |I| = |D| = 0. 

We also have (n≤5 an() = n and an() = n, while an() = 0 and bn() = 0, so that 

d(,) = contribution(O) = 2 ∑5 I = 30 .

Examples 2 and 3 together suggest that the distance between disjoint substrings may be unaffected by the internal structure of each. That is

Conjecture: if ||=||=n and and  share no substrings in common (i.e., |I (D|=0), then 

d(,) = n(n+1)

3.4. Example of Four Strings

Let   be four strings defined over the alphabet {a,b,c,d} with

= aaaab,
 = {4a,1b,3aa,1ab,2aaa,1aab,1aaaa,1aaab,1aaaab}
= aabaa,
= {4a, 1b, 2aa, 1ab, 1ba, 1aab, 1aba, 1baa, 1aaba, 1abaa, 1aabaa }

= baaaa,
 = {4a,1b, 3aa, 1ba, 1baa, 2aaa, 1baaa, 1aaaa, 1baaaa}
and 

=ccdcc
 = {4c, 1d, 2cc, 1cd, 1dc, 1ccd, 1cdc, 1dcc, 1ccdc,       1cdcc, 1ccdcc }

Then their distance matrix (leaving the lower half diagonal blank due to symmetry) is given by 

	d
	
	
	
	

	
	0
	12
	10
	30

	
	
	0
	12
	30

	
	
	
	0
	30

	
	
	
	
	0


Observation: that  and are “closer” than either is to b may seem counter-intuitive to those accustomed to a minimum transformation approach, but it is important to realize that both a and g share the strings aaa and aaaa. Our approach to similarity also recognizes and rewards the fact that a and b (unlike g) share aab as a substring, but this fact is just not so prominent as the fact that aaa is contained twice by each. In truth, the metric we have defined is strongly influenced by the size of the largest substring as we conjecture that

Conjecture: If || = || = n and k is the size of the largest substring contained in  and , then 

d(,) will be proportional to  n2 – k2.

3.5. Example of Five More Strings

With these examples we examine the question of the similarity of a string with its own substrings.

Let   be five strings defined over the alphabet {a,b} with

= aaaa,  
= {4a,3aa, 2aaa,1}, 
∑=10
= abab,   
= {2a,2b,2ab,1ba,1aba,1bab,1 },
 ∑=10
= ,
 = {8a, 7aa, 6aaa, 5, 4a, 3aa, 2aaa, 1},
∑=36

=  =abababab
= {4a, 4b, 4ab, 3ba, 3aba, 3bab, 3, 2baba, 2a,
 2b, 2ab, 1ba, 1aba, 1bab, 1},  
∑=36

and

 = =aaaaabab
={6a, 2b, 4aa, 2ab, 1ba, 3aaa, 1aab, 1aba, 1bab, 2, 1aaab, 1aaba, 1, 1a, 1b, 1aaaba, 1aabab,  1ab, 1ba, 1aaabab, 1aba, 1bab, 1} 
∑=36

	d
	
	
	
	=
	

	
	0
	15
	26
	38
	26

	
	
	0
	42
	26
	26

	
	
	
	0
	30
	34

	
	
	
	
	0
	36

	
	
	
	
	
	0


Note from the above an apparent asymmetry: d() ≠d(,). (This would be expected though from a simpler example: if  ab and a in which d(aa,aab)=3 and d(abab,aab)=8 .)  (2a2, 2b1, 2ab1, 1ba0, 0aa1, 1aba0, 1bab0, 0aab1, 1abab0)

More interestingly though is the result that d()=d()=d()=d()=26.

This suggests the following result and conjecture:

We have the relatively trivial result that

Lemma: if =an then d(,)= n2 + n(n+1)/2

This follows from the observations that for 1≤j≤n,  will contain the string aj exactly (n+1)-j times while  will contain aj exactly (2n+1)-j times. Hence each of these n dimensions aj contributes a distance of n to the distance. The remaining n(n+1)/2 of the summed distance comes from the strings that are longer than . Since  contains none of them, and since  contains aj exactly (2n+1)-j times for values of j between n+1 and 2n, this gives the result of the above lemma. If the results for strings alpha and beta in the table hold, then we offer the following

Conjecture: if |= n

Then  d()=d()=d()=d()= n2 + n(n+1)/2

3.6 Example of Three Graphs

Figure 2 presents three graphs as well as a matrix showing the count of each of the subgraphs they contain. Recall, that in graph theoretic jargon, we are considering only the induced subgraph on a subset of the nodes of a graph, since this is more consistent across the various types of structures we are considering, by virtue of the axiom-preserving requirement of substructures.

Figure 2. Subgraph Counting

[image: image5.png]



From the above we may calculate the distance matrix of the three graphs

	d
	A
	B
	C

	A
	0
	6
	12

	B
	
	0
	16

	C
	
	
	0


It is perhaps reassuring to see that the concept of distance as we have defined it, matches very nicely with intuition in this case.

We might also investigate a question like that of similarity of strings and substrings by considering the following two subgraphs K3 and L3.  L3 contains the first six subgraphs of the above matrix with this frequency: (3,1,2,0,1,0) while the frequencies for K3 are (3,0,3,0,0,1). Hence the distance between K4 and its subgraph K3 is 8; the distance between K4 and L3 (not a subgraph) is 11. Graph A contains both L3 and K3 as subgraphs. d(A, K3) is 8 and its distance d(A,L3) is also 8. This suggests a similar conjecture the distance between graphs and their subgraphs as to that suggested above for strings.

4.  Conclusion

What remains to be discussed in a future paper is the computational complexity of actually calculating these distances for arbitrary structures. Our suspicion is that sufficiently many of these small conjectures and lemmas may be resolved that the overall computational complexity, which appears at first glance to be exponential, may in fact be heuristically reduced to motivate computational feasibility.
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