Lecture Notes for Chapter 25:
All-Pairs Shortest Paths

Chapter 25 overview

Given a directed graph $G = (V, E)$, weight function $w : E \to \mathbb{R}, |V| = n$.
Goal: create an $n \times n$ matrix of shortest-path distances $\delta(u, v)$.
Could run BELLMAN-FORD once from each vertex:

- $O(V^2 E)$—which is $O(V^4)$ if the graph is dense ($E = \Theta(V^2)$).

If no negative-weight edges, could run Dijkstra’s algorithm once from each vertex:

- $O(VE \lg V)$ with binary heap—$O(V^3 \lg V)$ if dense,
- $O(V^2 \lg V + VE)$ with Fibonacci heap—$O(V^3)$ if dense.

We’ll see how to do in $O(V^3)$ in all cases, with no fancy data structure.

Shortest paths and matrix multiplication

Assume that G is given as adjacency matrix of weights: $W = (w_{ij})$, with vertices numbered 1 to n.

$$ w_{ij} = \begin{cases}
0 & \text{if } i = j \\
\text{weight of } (i, j) & \text{if } i \neq j, (i, j) \in E \\
\infty & \text{if } i \neq j, (i, j) \notin E.
\end{cases} $$

Output is matrix $D = (d_{ij})$, where $d_{ij} = \delta(i, j)$. Won’t worry about predecessors—see book.

Will use dynamic programming at first.

Optimal substructure: Recall: subpaths of shortest paths are shortest paths.

Recursive solution: Let $l_{ij}^{(m)}$ = weight of shortest path $i \leadsto j$ that contains $\leq m$ edges.

- $m = 0$
 - there is a shortest path $i \leadsto j$ with $\leq m$ edges if and only if $i = j$
 - $l_{ij}^{(0)} = \begin{cases}
0 & \text{if } i = j \\
\infty & \text{if } i \neq j.
\end{cases}$
• \(m \geq 1 \)
 \[
 l_{ij}^{(m)} = \min \left(l_{ij}^{(m-1)}, \min_{1 \leq k \leq n} \left\{ l_{ik}^{(m-1)} + w_{kj} \right\} \right)
 \]
 \((k \text{ is all possible predecessors of } j) \)
 \[
 = \min_{1 \leq k \leq n} \left\{ l_{ij}^{(m-1)} + w_{kj} \right\}
 \]
 since \(w_{jj} = 0 \) for all \(j \).

• Observe that when \(m = 1 \), must have \(l_{ij}^{(1)} = w_{ij} \).
 Conceptually, when the path is restricted to at most 1 edge, the weight of the shortest path \(i \leadsto j \) must be \(w_{ij} \).
 And the math works out, too:
 \[
 l_{ij}^{(1)} = \min_{1 \leq k \leq n} \left\{ l_{ik}^{(0)} + w_{kj} \right\}
 \]
 \((l_{ij}^{(0)} \text{ is the only non-}\infty \text{ among } l_{ik}^{(0)}) \)
 \[
 = l_{ij}^{(0)} + w_{ij}
 \]
 All simple shortest paths contain \(\leq n - 1 \) edges
 \[
 \Rightarrow \delta(i, j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = \ldots
 \]

Compute a solution bottom-up: Compute \(L^{(1)}, L^{(2)}, \ldots, L^{(n-1)} \).

Start with \(L^{(1)} = W \), since \(l_{ij}^{(1)} = w_{ij} \).

Go from \(L^{(m-1)} \) to \(L^{(m)} \):

EXTEND\((L, W, n) \)
create \(L' \), an \(n \times n \) matrix
for \(i \leftarrow 1 \) to \(n \)
 do for \(j \leftarrow 1 \) to \(n \)
 do \(l'_{ij} \leftarrow \infty \)
 for \(k \leftarrow 1 \) to \(n \)
 do \(l'_{ij} \leftarrow \min(l'_{ij}, l_{ik} + w_{kj}) \)
return \(L' \)

Compute each \(L^{(m)} \):

SLOW-APSP\((W, n) \)
\(L^{(1)} \leftarrow W \)
for \(m \leftarrow 2 \) to \(n - 1 \)
 do \(L^{(m)} \leftarrow \text{EXTEND}(L^{(m-1)}, W, n) \)
return \(L^{(n-1)} \)

Time:

• \(\text{EXTEND: } \Theta(n^3) \).
• \(\text{SLOW-APSP: } \Theta(n^4) \).
Observation: EXTEND is like matrix multiplication:

\[
\begin{align*}
L & \rightarrow A \\
W & \rightarrow B \\
L' & \rightarrow C \\
\min & \rightarrow + \\
+ & \rightarrow . \\
\infty & \rightarrow 0
\end{align*}
\]

create \(C \), an \(n \times n \) matrix

for \(i \leftarrow 1 \) to \(n \)
 for \(j \leftarrow 1 \) to \(n \)
 \(c_{ij} \leftarrow 0 \)
 for \(k \leftarrow 1 \) to \(n \)
 \(c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj} \)

So, we can view EXTEND as just like matrix multiplication!

Why do we care?

Because our goal is to compute \(L^{(n-1)} \) as fast as we can. Don’t need to compute all the intermediate \(L^{(1)}, L^{(2)}, L^{(3)}, \ldots, L^{(n-2)} \).

Suppose we had a matrix \(A \) and we wanted to compute \(A^{n-1} \) (like calling EXTEND \(n-1 \) times).

Could compute \(A, A^2, A^4, A^8, \ldots \)

If we knew \(A^m = A^{n-1} \) for all \(m \geq n - 1 \), could just finish with \(A^r \), where \(r \) is the smallest power of 2 that’s \(\geq n - 1 \). (\(r = 2^{\lceil \log (n-1) \rceil} \))

FASTER-APSP(\(W, n \))

\[
\begin{align*}
L^{(1)} & \leftarrow W \\
m & \leftarrow 1 \\
while m < n - 1 \\
 do L^{(2m)} & \leftarrow \text{EXTEND}(L^{(m)}, L^{(m)}, n) \\
 m & \leftarrow 2m \\
return L^{(m)}
\end{align*}
\]

OK to overshoot, since products don’t change after \(L^{(n-1)} \).

Time: \(\Theta(n^3 \log n) \).

Floyd-Warshall algorithm

A different dynamic-programming approach.

For path \(p = (v_1, v_2, \ldots, v_l) \), an **intermediate vertex** is any vertex of \(p \) other than \(v_1 \) or \(v_l \).

Let \(d_{ij}^{(k)} \) = shortest-path weight of any path \(i \sim j \) with all intermediate vertices in \(\{1, 2, \ldots, k\} \).

Consider a shortest path \(i \rightarrow^p j \) with all intermediate vertices in \(\{1, 2, \ldots, k\} \):
• If k is not an intermediate vertex, then all intermediate vertices of p are in $\{1, 2, \ldots, k - 1\}$.
• If k is an intermediate vertex:

\[
\begin{array}{c}
\text{all intermediate vertices in } \{1, 2, \ldots, k - 1\}
\end{array}
\]

Recursive formulation

\[
d^{(k)}_{ij} = \begin{cases}
 w_{ij} & \text{if } k = 0, \\
 \min \left(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj} \right) & \text{if } k \geq 1.
\end{cases}
\]

(Have $d^{(0)}_{ij} = w_{ij}$ because can’t have intermediate vertices $\Rightarrow \leq 1$ edge.)
Want $D^{(n)} = (d^{(n)}_{ij})$, since all vertices numbered $\leq n$.

Compute bottom-up

Compute in increasing order of k:

\[
\text{FLOYD-WARSHALL}(W, n) \\
D^{(0)} \leftarrow W \\
\text{for } k \leftarrow 1 \text{ to } n \text{ do for } i \leftarrow 1 \text{ to } n \text{ do for } j \leftarrow 1 \text{ to } n \text{ do } d^{(k)}_{ij} \leftarrow \min \left(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj} \right)
\]

return $D^{(n)}$

Can drop superscripts. (See Exercise 25.2-4 in text.)

Time: $\Theta(n^3)$.

Transitive closure

Given $G = (V, E)$, directed.
Compute $G^* = (V, E^*)$.
• $E^* = \{(i, j) : \text{there is a path } i \rightsquigarrow j \text{ in } G\}$.
Could assign weight of 1 to each edge, then run FLOYD-WARSHALL.
• If $d_{ij} < n$, then there is a path $i \rightsquigarrow j$.
• Otherwise, $d_{ij} = \infty$ and there is no path.
Simpler way: Substitute other values and operators in FLOYD-WARSHALL.

- Use unweighted adjacency matrix
- \(\min \rightarrow \lor \) (OR)
- \(+ \rightarrow \land \) (AND)
- \(t^{(k)}_{ij} = \begin{cases} 1 & \text{if there is path } i \sim j \text{ with all intermediate vertices in } \{1, 2, \ldots, k\}, \\ 0 & \text{otherwise}. \end{cases} \)
- \(t^{(0)}_{ij} = \begin{cases} 0 & \text{if } i \neq j \text{ and } (i, j) \notin E, \\ 1 & \text{if } i = j \text{ or } (i, j) \in E. \end{cases} \)
- \(t^{(k)}_{ij} = t^{(k-1)}_{ij} \lor (t^{(k-1)}_{ik} \land t^{(k-1)}_{kj}). \)

TRANSITIVE-CLOSURE \((E, n)\)

```plaintext
for i ← 1 to n
    do for j ← 1 to n
        do if i = j or (i, j) ∈ E[\(G\)]
            then \( t^{(0)}_{ij} \leftarrow 1 \)
                else \( t^{(0)}_{ij} \leftarrow 0 \)

for k ← 1 to n
    do for i ← 1 to n
        do for j ← 1 to n
            do \( t^{(k)}_{ij} \leftarrow t^{(k-1)}_{ij} \lor (t^{(k-1)}_{ik} \land t^{(k-1)}_{kj}) \)

return \( T^{(n)} \)
```

Time: \(\Theta(n^3) \), but simpler operations than FLOYD-WARSHALL.

Johnson’s algorithm

Idea: If the graph is sparse, it pays to run Dijkstra’s algorithm once from each vertex.

If we use a Fibonacci heap for the priority queue, the running time is down to \(O(V^2 \lg V + VE) \), which is better than FLOYD-WARSHALL’s \(\Theta(V^3) \) time if \(E = o(V^2) \).

But Dijkstra’s algorithm requires that all edge weights be nonnegative.
Donald Johnson figured out how to make an equivalent graph that does have all edge weights \(\geq 0 \).

Reweighting

Compute a new weight function \(\hat{w} \) such that

1. For all \(u, v \in V, p \) is a shortest path \(u \sim v \) using \(w \) if and only if \(p \) is a shortest path \(u \sim v \) using \(\hat{w} \).
2. For all \((u, v) \in E, \hat{w}(u, v) \geq 0\).
Property (1) says that it suffices to find shortest paths with \(\hat{w} \). Property (2) says we can do so by running Dijkstra’s algorithm from each vertex.

How to come up with \(\hat{w} \)?

Lemma shows it’s easy to get property (1):

Lemma (Reweighting doesn’t change shortest paths)

Given a directed, weighted graph \(G = (V, E), w : E \to \mathbb{R} \). Let \(h \) be any function such that \(h : V \to \mathbb{R} \). For all \((u, v) \in E\), define

\[
\hat{w}(u, v) = w(u, v) + h(u) - h(v) .
\]

Let \(p = \langle v_0, v_1, \ldots, v_k \rangle \) be any path \(v_0 \sim v_k \).

Then, \(p \) is a shortest path \(v_0 \sim v_k \) with \(w \) if and only if \(p \) is a shortest path \(v_0 \sim v_k \) with \(\hat{w} \). (Formally, \(w(p) = \hat{\delta}(v_0, v_k) \) if and only if \(\hat{w} = \hat{\delta}(v_0, v_k) \), where \(\hat{\delta} \) is the shortest-path weight with \(\hat{w} \).)

Also, \(G \) has a negative-weight cycle with \(w \) if and only if \(G \) has a negative-weight cycle with \(\hat{w} \).

Proof First, we’ll show that \(\hat{w}(p) = w(p) + h(v_0) - h(v_k) \):

\[
\hat{w}(p) = \sum_{i=1}^{k} \hat{w}(v_{i-1}, v_i) = \sum_{i=1}^{k} (w(v_{i-1}, v_i) + h(v_{i-1}) - h(v_i)) = \sum_{i=1}^{k} w(v_{i-1}, v_i) + h(v_0) - h(v_k) \text{ (sum telescopes)} = w(p) + h(v_0) - h(v_k) .
\]

Therefore, any path \(v_0 \xrightarrow{p} v_k \) has \(\hat{w}(p) = w(p) + h(v_0) - h(v_k) \). Since \(h(v_0) \) and \(h(v_k) \) don’t depend on the path from \(v_0 \) to \(v_k \), if one path \(v_0 \sim v_k \) is shorter than another with \(w \), it’s also shorter with \(\hat{w} \).

Now show there exists a negative-weight cycle with \(w \) if and only if there exists a negative-weight cycle with \(\hat{w} \):

- Let cycle \(c = \langle v_0, v_1, \ldots, v_k \rangle \), where \(v_0 = v_k \).
- Then

\[
\hat{w}(c) = w(c) + h(v_0) - h(v_k) = w(c) \text{ (since } v_0 = v_k) .
\]

Therefore, \(c \) has a negative-weight cycle with \(w \) if and only if it has a negative-weight cycle with \(\hat{w} \).** (lemma)

So, now to get property (2), we just need to come up with a function \(h : V \to \mathbb{R} \) such that when we compute \(\hat{w}(u, v) = w(u, v) + h(u) - h(v) \), it’s \(\geq 0 \).

Do what we did for difference constraints:

- \(G' = (V', E') \)
Lecture Notes for Chapter 25: All-Pairs Shortest Paths 25-7

- $V' = V \cup \{s\}$, where s is a new vertex.
- $E' = E \cup \{(s, v) : v \in V\}$.
- $w(s, v) = 0$ for all $v \in V$.
- Since no edges enter s, G' has the same set of cycles as G. In particular, G has a negative-weight cycle if and only if G does.

Define $h(v) = \delta(s, v)$ for all $v \in V$.

Claim
\[\hat{w}(u, v) = w(u, v) + h(u) - h(v) \geq 0. \]

Proof By the triangle inequality,
\[
\delta(s, v) \leq \delta(s, u) + w(u, v)
\]
\[
h(v) \leq h(u) + w(u, v).
\]
Therefore, $w(u, v) + h(u) - h(v) \geq 0$. \hfill ■

Johnson’s algorithm

form G'
run BELLMAN-FORD on G' to compute $\delta(s, v)$ for all $v \in V$
if BELLMAN-FORD returns FALSE
then G has a negative-weight cycle
else
compute $\hat{w}(u, v) = w(u, v) + \delta(s, u) - \delta(s, v)$ for all $(u, v) \in E$
for each vertex $u \in V$
do run Dijkstra’s algorithm from u using weight function \hat{w}
to compute $\hat{\delta}(u, v)$ for all $v \in V$
for each vertex $v \in V$
do \[\hat{\delta}(u, v) = \hat{\delta}(u, v) + \hat{\delta}(s, v) - \hat{\delta}(s, u) \]
because if p is a path $u \leadsto v$,
then $\hat{w}(p) = w(p) + h(u) - h(v)$

Time:
- $\Theta(V + E)$ to compute G'.
- $O(V E)$ to run BELLMAN-FORD.
- $\Theta(E)$ to compute \hat{w}.
- $O(V^2 \lg V + VE)$ to run Dijkstra’s algorithm $|V|$ times (using Fibonacci heap).
- $\Theta(V^2)$ to compute D matrix.

Total: $O(V^2 \lg V + VE)$.